歡迎光臨管理范文網(wǎng)
當前位置:工作總結 > 總結大全 > 總結范文

數(shù)學必修三知識總結(四篇)

發(fā)布時間:2023-06-21 18:02:05 查看人數(shù):84

數(shù)學必修三知識總結

【第1篇 高三數(shù)學必修三知識點總結

導語仰望天空時,什么都比你高,你會自卑;俯視大地時,什么都比你低,你會自負;只有放寬視野,把天空和大地盡收眼底,才能在蒼穹泛土之間找到你真正的位置。無須自卑,不要自負,堅持自信。高三頻道為你整理了《高三數(shù)學必修三知識點總結》,歡迎閱讀,祝愿天下所有的學子們都能取得的成績!

1.高三數(shù)學必修三知識點總結

1、二元一次不等式(組)表示平面區(qū)域的判斷方法:直線定界,測試點定域.

注意:不等式中不等號有無等號,無等號時直線畫成虛線,有等號時直線畫成實線.測試點可以選一個,也可以選多個,若直線不過原點,測試點常選取原點.

2、求目標函數(shù)的最值的一般步驟為:一畫二移三求.其關鍵是準確作出可行域,理解目標函數(shù)的意義.

3、常見的目標函數(shù)有:

(1)、截距型:形如z=a_+by.

求這類目標函數(shù)的最值常將函數(shù)z=a_+by轉化為直線的斜截式:y=-a/b_+z/b,通過求直線的截距z/b的最值間接求出z的最值.

(2)、距離型:形如z=(_-a)2+(y-b)2.

(3)、斜率型:形如z=(y-b)/(_-a).

注意:轉化的等價性及幾何意義.

4、與線性規(guī)劃有關的應用問題,通常涉及化問題.如用料最省、獲利等,其解題步驟是:

①設未知數(shù),確定線性約束條件及目標函數(shù);

②轉化為線性規(guī)劃模型;

③解該線性規(guī)劃問題,求出解;

④調(diào)整解.

2.高三數(shù)學必修三知識點總結

1.不等式的定義

在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數(shù)學符號連接兩個數(shù)或代數(shù)式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.

2.比較兩個實數(shù)的大小

兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,

有a-b>0?;a-b=0?;a-b<0?.

另外,若b>0,則有>1?;=1?;<1?.

概括為:作差法,作商法,中間量法等.

3.不等式的性質(zhì)

(1)對稱性:a>b?;

(2)傳遞性:a>b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈n,n≥2);

(6)可開方:a>b>0?(n∈n,n≥2).

3.高三數(shù)學必修三知識點總結

兩角和差公式

兩角和與差的三角函數(shù)公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

二倍角公式

二倍角的正弦、余弦和正切公式(升冪縮角公式)

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

tan2α=2tanα/[1-tan^2(α)]

半角公式

半角的正弦、余弦和正切公式(降冪擴角公式)

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

另也有tan(α/2)=(1-cosα)/sinα=sinα/(1+cosα)

萬能公式

sinα=2tan(α/2)/[1+tan^2(α/2)]

cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

萬能公式推導

附推導:

sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......_,

(因為cos^2(α)+sin^2(α)=1)

再把_分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α))

然后用α/2代替α即可。

同理可推導余弦的萬能公式。正切的萬能公式可通過正弦比余弦得到。

4.高三數(shù)學必修三知識點總結

1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數(shù)軸和文氏圖進行求解。

2.在應用條件時,易a忽略是空集的情況

3.你會用補集的思想解決有關問題嗎?

4.簡單命題與復合命題有什么區(qū)別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?

5.你知道“否命題”與“命題的否定形式”的區(qū)別。

6.求解與函數(shù)有關的問題易忽略定義域優(yōu)先的原則。

7.判斷函數(shù)奇偶性時,易忽略檢驗函數(shù)定義域是否關于原點對稱。

8.求一個函數(shù)的解析式和一個函數(shù)的反函數(shù)時,易忽略標注該函數(shù)的定義域。

9.原函數(shù)在區(qū)間[-a,a]上單調(diào)遞增,則一定存在反函數(shù),且反函數(shù)也單調(diào)遞增;但一個函數(shù)存在反函數(shù),此函數(shù)不一定單調(diào)。

10.你熟練地掌握了函數(shù)單調(diào)性的證明方法嗎?定義法(取值,作差,判正負)和導數(shù)法

5.高三數(shù)學必修三知識點總結

表達式:(a+b)(a-b)=a^2-b^2,兩個數(shù)的和與這兩個數(shù)差的積,等于這兩個數(shù)的平方差,這個公式就叫做乘法的平方差公式

公式運用

可用于某些分母含有根號的分式:

1/(3-4倍根號2)化簡:

1×(3+4倍根號2)/(3-4倍根號2)^2;=(3+4倍根號2)/(9-32)=(3+4倍根號2)/-23

[解方程]

_^2-y^2=1991

[思路分析]

利用平方差公式求解

[解題過程]

_^2-y^2=1991

(_+y)(_-y)=1991

因為1991可以分成1×1991,11×181

所以如果_+y=1991,_-y=1,解得_=996,y=995

如果_+y=181,_-y=11,_=96,y=85同時也可以是負數(shù)

所以解有_=996,y=995,或_=996,y=-995,或_=-996,y=995或_=-996,y=-995

或_=96,y=85,或_=96,y=-85或_=-96,y=85或_=-96,y=-85

有時應注意加減的過程。

【第2篇 高一年級數(shù)學必修三知識點總結

1、柱、錐、臺、球的結構特征

(1)棱柱:

定義:有兩個面互相平行,其余各面都是四邊形,且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點字母,如五棱柱或用對角線的端點字母,如五棱柱

幾何特征:兩底面是對應邊平行的全等多邊形;側面、對角面都是平行四邊形;側棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱錐、四棱錐、五棱錐等

表示:用各頂點字母,如五棱錐

幾何特征:側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方。

(3)棱臺:

定義:用一個平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

分類:以底面多邊形的邊數(shù)作為分類的標準分為三棱態(tài)、四棱臺、五棱臺等

表示:用各頂點字母,如五棱臺

幾何特征:①上下底面是相似的平行多邊形②側面是梯形③側棱交于原棱錐的頂點

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉,其余三邊旋轉所成的曲面所圍成的幾何體

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側面展開圖是一個矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉軸,旋轉一周所成的曲面所圍成的幾何體

幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側面展開圖是一個扇形。

(6)圓臺:

定義:用一個平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個圓;②側面母線交于原圓錐的頂點;③側面展開圖是一個弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉軸,半圓面旋轉一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側視圖(從左向右)、俯視圖(從上向下)

注:正視圖反映了物體上下、左右的位置關系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關系,即反映了物體的長度和寬度;

側視圖反映了物體上下、前后的位置關系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點:①原來與_軸平行的線段仍然與_平行且長度不變;②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

【第3篇 高二上冊數(shù)學必修三知識點總結

導語高二變化的大背景,便是文理分科(或七選三)。在對各個學科都有了初步了解后,學生們需要對自己未來的發(fā)展科目有所選擇、有所側重。這可謂是學生們第一次完全自己把握、風險未知的主動選擇。高二頻道為你整理了《高二上冊數(shù)學必修三知識點總結》,助你金榜題名!

1.高二上冊數(shù)學必修三知識點總結

1.函數(shù)的奇偶性

(1)若f(_)是偶函數(shù),那么f(_)=f(-_);

(2)若f(_)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));

(3)判斷函數(shù)奇偶性可用定義的等價形式:f(_)±f(-_)=0或(f(_)≠0);

(4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;

(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;

2.復合函數(shù)的有關問題

(1)復合函數(shù)定義域求法:若已知的定義域為[a,b],其復合函數(shù)f[g(_)]的定義域由不等式a≤g(_)≤b解出即可;若已知f[g(_)]的定義域為[a,b],求f(_)的定義域,相當于_∈[a,b]時,求g(_)的值域(即f(_)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

(2)復合函數(shù)的單調(diào)性由“同增異減”判定;

3.函數(shù)圖像(或方程曲線的對稱性)

(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;

(2)證明圖像c1與c2的對稱性,即證明c1上任意點關于對稱中心(對稱軸)的對稱點仍在c2上,反之亦然;

(3)曲線c1:f(_,y)=0,關于y=_+a(y=-_+a)的對稱曲線c2的方程為f(y-a,_+a)=0(或f(-y+a,-_+a)=0);

(4)曲線c1:f(_,y)=0關于點(a,b)的對稱曲線c2方程為:f(2a-_,2b-y)=0;

(5)若函數(shù)y=f(_)對_∈r時,f(a+_)=f(a-_)恒成立,則y=f(_)圖像關于直線_=a對稱;

(6)函數(shù)y=f(_-a)與y=f(b-_)的圖像關于直線_=對稱;

4.函數(shù)的周期性

(1)y=f(_)對_∈r時,f(_+a)=f(_-a)或f(_-2a)=f(_)(a>0)恒成立,則y=f(_)是周期為2a的周期函數(shù);

(2)若y=f(_)是偶函數(shù),其圖像又關于直線_=a對稱,則f(_)是周期為2︱a︱的周期函數(shù);

(3)若y=f(_)奇函數(shù),其圖像又關于直線_=a對稱,則f(_)是周期為4︱a︱的周期函數(shù);

(4)若y=f(_)關于點(a,0),(b,0)對稱,則f(_)是周期為2的周期函數(shù);

(5)y=f(_)的圖象關于直線_=a,_=b(a≠b)對稱,則函數(shù)y=f(_)是周期為2的周期函數(shù);

(6)y=f(_)對_∈r時,f(_+a)=-f(_)(或f(_+a)=,則y=f(_)是周期為2的周期函數(shù);

5.方程k=f(_)有解k∈d(d為f(_)的值域);

2.高二上冊數(shù)學必修三知識點總結

1.輾轉相除法是用于求公約數(shù)的一種方法,這種算法由歐幾里得在公元前年左右首先提出,因而又叫歐幾里得算法.

2.所謂輾轉相法,就是對于給定的兩個數(shù),用較大的數(shù)除以較小的數(shù).若余數(shù)不為零,則將較小的數(shù)和余數(shù)構成新的一對數(shù),繼續(xù)上面的除法,直到大數(shù)被小數(shù)除盡,則這時的除數(shù)就是原來兩個數(shù)的公約數(shù).

3.更相減損術是一種求兩數(shù)公約數(shù)的方法.其基本過程是:對于給定的兩數(shù),用較大的數(shù)減去較小的數(shù),接著把所得的差與較小的數(shù)比較,并以大數(shù)減小數(shù),繼續(xù)這個操作,直到所得的數(shù)相等為止,則這個數(shù)就是所求的公約數(shù).

4.秦九韶算法是一種用于計算一元二次多項式的值的方法.

5.常用的排序方法是直接插入排序和冒泡排序.

6.進位制是人們?yōu)榱擞嫈?shù)和運算方便而約定的記數(shù)系統(tǒng).“滿進一”,就是k進制,進制的基數(shù)是k.

7.將進制的數(shù)化為十進制數(shù)的方法是:先將進制數(shù)寫成用各位上的數(shù)字與k的冪的乘積之和的形式,再按照十進制數(shù)的運算規(guī)則計算出結果.

8.將十進制數(shù)化為進制數(shù)的方法是:除k取余法.即用k連續(xù)去除該十進制數(shù)或所得的商,直到商為零為止,然后把每次所得的余數(shù)倒著排成一個數(shù)就是相應的進制數(shù).

3.高二上冊數(shù)學必修三知識點總結

(1)總體和樣本:

①在統(tǒng)計學中,把研究對象的全體叫做總體.

②把每個研究對象叫做個體.

③把總體中個體的總數(shù)叫做總體容量.

④為了研究總體的有關性質(zhì),一般從總體中隨機抽取一部分:_1,_2,....,_研究,我們稱它為樣本.其中個體的個數(shù)稱為樣本容量.

(2)簡單隨機抽樣,也叫純隨機抽樣。

就是從總體中不加任何分組、劃類、排隊等,完全隨機地抽取調(diào)查單位。特點是:每個樣本單位被抽中的可能性相同(概率相等),樣本的每個單位完全獨立,彼此間無一定的關聯(lián)性和排斥性。簡單隨機抽樣是其它各種抽樣形式的基礎。通常只是在總體單位之間差異程度較小和數(shù)目較少時,才采用這種方法。

(3)簡單隨機抽樣常用的方法:

①抽簽法

②隨機數(shù)表法

③計算機模擬法

在簡單隨機抽樣的樣本容量設計中,主要考慮:

①總體變異情況;

②允許誤差范圍;

③概率保證程度。

(4)抽簽法:

①給調(diào)查對象群體中的每一個對象編號;

②準備抽簽的工具,實施抽簽;

③對樣本中的每一個個體進行測量或調(diào)查

4.高二上冊數(shù)學必修三知識點總結

1.不等式的定義

在客觀世界中,量與量之間的不等關系是普遍存在的,我們用數(shù)學符號、、連接兩個數(shù)或代數(shù)式以表示它們之間的不等關系,含有這些不等號的式子,叫做不等式.

2.比較兩個實數(shù)的大小

兩個實數(shù)的大小是用實數(shù)的運算性質(zhì)來定義的,有a-baa-b=0a-ba0,則有a/baa/b=1a/ba

3.不等式的性質(zhì)

(1)對稱性:ab

(2)傳遞性:ab,ba

(3)可加性:aa+cb+c,ab,ca+c

(4)可乘性:ab,cacb0,c0bd;

(5)可乘方:a0bn(nn,n

(6)可開方:a0

(nn,n2).

注意:

一個技巧

作差法變形的技巧:作差法中變形是關鍵,常進行因式分解或配方.

一種方法

待定系數(shù)法:求代數(shù)式的范圍時,先用已知的代數(shù)式表示目標式,再利用多項式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標式的范圍.

5.高二上冊數(shù)學必修三知識點總結

一、導數(shù)的應用

1、用導數(shù)研究函數(shù)的最值

確定函數(shù)在其確定的定義域內(nèi)可導(通常為開區(qū)間),求出導函數(shù)在定義域內(nèi)的零點,研究在零點左、右的函數(shù)的單調(diào)性,若左增,右減,則在該零點處,函數(shù)去極大值;若左邊減少,右邊增加,則該零點處函數(shù)取極小值。

學習了如何用導數(shù)研究函數(shù)的最值之后,可以做一個有關導數(shù)和函數(shù)的綜合題來檢驗下學習成果。

2、生活中常見的函數(shù)優(yōu)化問題

1)費用、成本最省問題

2)利潤、收益問題

3)面積、體積最(大)問題

二、推理與證明

1、歸納推理:歸納推理是高二數(shù)學的一個重點內(nèi)容,其難點就是有部分結論得到一般結論,的方法是充分考慮部分結論提供的信息,從中發(fā)現(xiàn)一般規(guī)律;類比推理的難點是發(fā)現(xiàn)兩類對象的相似特征,由其中一類對象的特征得出另一類對象的特征,的方法是利用已經(jīng)掌握的數(shù)學知識,分析兩類對象之間的關系,通過兩類對象已知的相似特征得出所需要的相似特征。

2、類比推理:由兩類對象具有某些類似特征和其中一類對象的某些已知特征,推出另一類對象也具有這些特征的推理稱為類比推理,簡而言之,類比推理是由特殊到特殊的推理。

三、不等式

對于含有參數(shù)的一元二次不等式解的討論

1)二次項系數(shù):如果二次項系數(shù)含有字母,要分二次項系數(shù)是正數(shù)、零和負數(shù)三種情況進行討論。

2)不等式對應方程的根:如果一元二次不等式對應的方程的根能夠通過因式分解的方法求出來,則根據(jù)這兩個根的大小進行分類討論,這時,兩個根的大小關系就是分類標準,如果一元二次不等式對應的方程根不能通過因式分解的方法求出來,則根據(jù)方程的判別式進行分類討論。

通過不等式練習題能夠幫助你更加熟練的運用不等式的知識點,例如用放縮法證明不等式這種技巧以及利用均值不等式求最值的九種技巧這樣的解題思路需要再做題的過程中總結出來。

四、坐標平面上的直線

1、內(nèi)容要目:直線的點方向式方程、直線的點法向式方程、點斜式方程、直線方程的一般式、直線的傾斜角和斜率等。點到直線的距離,兩直線的夾角以及兩平行線之間的距離。

2、基本要求:掌握求直線的方法,熟練轉化確定直線方向的不同條件(例如:直線方向向量、法向量、斜率、傾斜角等)。熟練判斷點與直線、直線與直線的不同位置,能正確求點到直線的距離、兩直線的交點坐標及兩直線的夾角大小。

3、重難點:初步建立代數(shù)方法解決幾何問題的觀念,正確將幾何條件與代數(shù)表示進行轉化,定量地研究點與直線、直線與直線的位置關系。根據(jù)兩個獨立條件求出直線方程。熟練運用待定系數(shù)法。

五、圓錐曲線

1、內(nèi)容要目:直角坐標系中,曲線c是方程f(_,y)=0的曲線及方程f(_,y)=0是曲線c的方程,圓的標準方程及圓的一般方程。橢圓、雙曲線、拋物線的標準方程及它們的性質(zhì)。

2、基本要求:理解曲線的方程與方程的曲線的意義,利用代數(shù)方法判斷定點是否在曲線

上及求曲線的交點。掌握圓、橢圓、雙曲線、拋物線的定義和求這些曲線方程的基本方法。求曲線的交點之間的距離及交點的中點坐標。利用直線和圓、圓和圓的位置關系的幾何判定,確定它們的位置關系并利用解析法解決相應的幾何問題。

3、重難點:建立數(shù)形結合的概念,理解曲線與方程的對應關系,掌握代數(shù)研究幾何的方法,掌握把已知條件轉化為等價的代數(shù)表示,通過代數(shù)方法解決幾何問題。

【第4篇 高一數(shù)學必修三知識點總結

高一數(shù)學必修三知識點總結

1.一些基本概念:

(1)向量:既有大小,又有方向的量.

(2)數(shù)量:只有大小,沒有方向的量.

(3)有向線段的三要素:起點、方向、長度.

(4)零向量:長度為0的向量.

(5)單位向量:長度等于1個單位的向量.

(6)平行向量(共線向量):方向相同或相反的非零向量.

※零向量與任一向量平行.

(7)相等向量:長度相等且方向相同的向量.

2.向量加法運算:

⑴三角形法則的特點:首尾相連.

⑵平行四邊形法則的特點:共起點

數(shù)學必修三知識總結(四篇)

導語仰望天空時,什么都比你高,你會自卑;俯視大地時,什么都比你低,你會自負;只有放寬視野,把天空和大地盡收眼底,才能在蒼穹泛土之間找到你真正的位置。無須自卑,不要自負,堅持自信。高…
推薦度:
點擊下載文檔文檔為doc格式

相關數(shù)學必修三知識信息

  • 數(shù)學必修三知識總結(四篇)
  • 數(shù)學必修三知識總結(四篇)84人關注

    導語仰望天空時,什么都比你高,你會自卑;俯視大地時,什么都比你低,你會自負;只有放寬視野,把天空和大地盡收眼底,才能在蒼穹泛土之間找到你真正的位置。無須自卑,不要自負,堅 ...[更多]

總結范文熱門信息