- 目錄
-
第1篇六年級百分數(shù)知識點總結 第2篇小升初備考:分數(shù)百分數(shù)知識點總結 第3篇小升初數(shù)學分數(shù)和百分數(shù)的知識總結 第4篇小升初數(shù)學分數(shù)與百分數(shù)的應用知識點總結梳理 第5篇小學奧數(shù)知識點總結:分數(shù)與百分數(shù)的應用 第6篇六年級數(shù)學上冊百分數(shù)知識點總結 第7篇小升初分數(shù)與百分數(shù)的應用知識要點總結 第8篇小學六年級奧數(shù)計算分數(shù)和百分數(shù)知識點總結 第9篇小升初數(shù)學百分數(shù)應用知識點總結 第10篇百分數(shù)知識點的學習總結
【第1篇 六年級百分數(shù)知識點總結
六年級百分數(shù)知識點總結
六年級百分數(shù)知識點總結
1、意義:表示一個數(shù)是另一個數(shù)的百分之幾。(千分數(shù):表示一個數(shù)是另一個數(shù)的千分之幾)
2、百分數(shù)和分數(shù)的區(qū)別:
①、意義不同:百分數(shù)只表示兩個數(shù)的倍比關系,不能表示具體的數(shù)量,所以不能帶單位;
分數(shù)既可以表示具體的數(shù),又可以表示兩個數(shù)的關系,表示具本數(shù)時可以帶單位。
②、百分數(shù)的分子可以是整數(shù),也可以是小數(shù);
分數(shù)的分子不能是小數(shù),只能是除0以外的自然數(shù)。
3、百分數(shù)與小數(shù)的互化:
(1)小數(shù)化成百分數(shù):把小數(shù)點向右移動兩位,同時在后面添上百分號。
(2) 百分數(shù)化成小數(shù):把小數(shù)點向左移動兩位,同時去掉百分號
4、百分數(shù)的和分數(shù)的互化
(1)百分數(shù)化成分數(shù):先把百分數(shù)化成分數(shù),先把百分數(shù)改寫成分母是否100的分數(shù),能約分要約成最簡分
(2)分數(shù)化成百分數(shù):
① 用分數(shù)的基本性質(zhì),把分數(shù)分母擴大或縮小成分母是100的分數(shù),再寫成百分數(shù)形式。
②先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。
5、用百分數(shù)解決問題
(一)一般應用題
2、已知單位“1”的量(用乘法),求單位“1”的百分之幾是多少的問題:
數(shù)量關系式和分數(shù)乘法解決問題中的關系式相同:
(1)分率前是“的”:單位“1”的量×分率=分率對應量 10的10%是多少
(2)分率前是“多或少” :單位“1”的量×(1+—分率)=分率對應量 比10多(少)10%
3、未知單位“1”的量(用除法),已知單位“1”的百分之幾是多少,求單位“1”。
解法:(建議:最好用方程解答)
(1)方程:根據(jù)數(shù)量關系式設未知量為_,用方程解答。
(2)算術(用除法): 分率對應量÷對應分率 = 單位“1”的量
4、求一個數(shù)比另一個數(shù)多(少)百分之幾的問題:
兩個數(shù)的相差量÷單位“1”的量 × 100% 或: 求多百分之幾:(大數(shù)÷小數(shù) – 1) × 100%② 求少百分之幾:( 1 - 小數(shù)÷大數(shù))× 100%
(二)、折扣
1、折扣:商品按原定價格的`百分之幾出售,叫做折扣。通稱“打折”。
幾折就表示十分之幾,也就是百分之幾十。例如八折==80﹪,六折五=0.65=65﹪
2、 一成是十分之一,也就是10%。三成五就是十分之三點五,也就是35%
(三)、納稅
1、納稅:納稅是根據(jù)國家稅法的有關規(guī)定,按照一定的比率把集體或個人收入的一部分繳納給國家。
2、納稅的意義:稅收是國家財政收入的主要來源之一。國家用收來的稅款發(fā)展經(jīng)濟、科技、教育、文化和
國防安全等事業(yè)。
3、應納稅額:繳納的稅款叫做應納稅額。
4、稅率:應納稅額與各種收入的比率叫做稅率。
5、應納稅額的計算方法:應納稅額 = 總收入 × 稅率
(四)利息
1、存款分為活期、整存整取和零存整取等方法。
2、儲蓄的意義:人們常常把暫時不用的錢存入銀行或信用社,儲蓄起來,這樣不僅可以支援國家建設,也
使得個人用錢更加安全和有計劃,還可以增加一些收入。
3、本金:存入銀行的錢叫做本金。
4、利息:取款時銀行多支付的錢叫做利息。
5、利率:利息與本金的比值叫做利率。
6、利息的計算公式:利息=本金×利率×時間
7、注意:如要上利息稅(國債和教育儲藏的利息不納稅),則:
稅后利息=利息-利息的應納稅額=利息-利息×利息稅率=利息×(1-利息稅率)
① 甲是50,乙是40,甲是乙的百分之幾?(50是40的百分之幾?)50÷40=125%
② 甲是50,乙是40,乙是甲的百分之幾?(40是50的百分之幾?)40÷50=80%
③ 乙是40,甲是乙的125%,甲數(shù)是多少?(40的125%是多少?)40×125%=50
④ 甲是50,乙是甲的80%,乙數(shù)是多少?(50的80%是多少?)50×80%=40
⑤ 乙是40,乙是甲的80%,甲數(shù)是多少?(一個數(shù)的80%是40,這個數(shù)是多少?)40÷80%=50 ⑥ 甲是50,甲是乙的125%,乙數(shù)是多少?(一個數(shù)的125%是50,這個數(shù)是多少?)50÷125%=40 ⑦ 甲是50,乙是40,甲比乙多百分之幾?(50比40多百分之幾?)(50-40)÷40×100%=25% ⑧ 甲是50,乙是40,乙比甲少百分之幾?(40比50少百分之幾?)(50-40)÷50×100%=20% ⑨ 甲比乙多25%,多10,乙是多少?10÷25%=40
⑩ 甲比乙多25%,多10,甲是多少?10÷25%+10=50
乙比甲少20%,少10,甲是多少?10÷20%=50
乙比甲少20%,少10,乙是多少?10÷20%-10=40
乙是40,甲比乙多25%,甲數(shù)是多少?(什么數(shù)比40多25%?)40×(1+25%)=50
甲是50,乙比甲少20%,乙數(shù)是多少?(什么數(shù)比50多25%?)50×(1-20%)=40
乙是40,比甲少20%,甲數(shù)是多少?(40比什么數(shù)少20%?)40÷(1-20%)=50
甲是50,比乙多25%,乙數(shù)是多少?(50比什么數(shù)多25%?)40÷(1+25%)=40。
【第2篇 小升初備考:分數(shù)百分數(shù)知識點總結
小升初備考:分數(shù)百分數(shù)知識點總結
分數(shù)真分數(shù)、假分數(shù)
一、把單位1平均分成若干份,表示這樣的一份或幾份的數(shù)叫做分數(shù)。表示其中一份的數(shù),是這個分數(shù)的分數(shù)單位。
二、兩個數(shù)相除,它們的商可以用分數(shù)表示。即:ab=b/a(b0)
三、小數(shù)和分數(shù)的意義可以看出,小數(shù)實際上就是分母是10、100、1000的分數(shù)。
四、分數(shù)可以分為真分數(shù)和假分數(shù)。
五、分子小于分母的分數(shù)叫做真分數(shù)。真分數(shù)小于1。
六、分子大于或等于分母的分數(shù)叫做假分數(shù)。假分數(shù)大于或等于1。
七、分子和分母只有公因數(shù)1的分數(shù)叫做最簡分數(shù)。
八、分數(shù)的基本性質(zhì):分數(shù)的分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。
九、小數(shù)的性質(zhì)和分數(shù)的基本性質(zhì)一致的,應用分數(shù)的基本性質(zhì),可以通分和約分。
百分數(shù)稅率、利息、折扣、成數(shù)
一、表示一個數(shù)是另一個數(shù)的'百分之幾的數(shù)叫做百分數(shù)。百分數(shù)也叫百分率或百分比,百分數(shù)通常用%表示。
二、分數(shù)與百分數(shù)比較:
三、分數(shù)、小數(shù)、百分數(shù)的互化。
(1)把分數(shù)化成小數(shù),用分數(shù)的分子除以分母。
(2)把小數(shù)化成分數(shù),先改寫成分母是10、100、1000的分數(shù),再約分。
(3)把小數(shù)化成百分數(shù),先把小數(shù)點向右移動兩位,然后添上百分號。
(4)把百分數(shù)化成小數(shù),先去掉百分號,然后把小數(shù)點向左移動兩位。
(5)把分數(shù)化成百分數(shù),先把分數(shù)化成小數(shù)(除不盡時通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。
(6)把百分數(shù)化成分數(shù),先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。
四、熟記常用三數(shù)的互化。
五、
1、出勤率表示出勤人數(shù)占總人數(shù)的百分之幾。
2、合格率表示合格件數(shù)占總件數(shù)的百分之幾。
3、成活率表示成活棵數(shù)占總棵數(shù)的百分之幾。
六、求一個數(shù)比另一個數(shù)多百分之幾,就是求一個數(shù)比另一個數(shù)多的占另一個數(shù)的百分之幾。
七、1、多的1=多百分之幾2、少的1=少百分之幾
八、應得利息是稅前利息,實得利息是稅后利息。
九、利息=本金利率時間
十、應得利息-利息稅=實得利息
十一、幾折表示十分之幾,表示百分之幾十;幾幾折表示十分之幾點幾,表示百分之幾十幾。
十二、
1、原價折扣=現(xiàn)價
2、現(xiàn)價原價=折扣
3、現(xiàn)價折扣=原價
十三、幾成表示十分之幾表示百分之幾十;幾成幾表示十分之幾點幾,表示百分之幾十幾。
【第3篇 小升初數(shù)學分數(shù)和百分數(shù)的知識總結
小升初數(shù)學分數(shù)和百分數(shù)的知識總結
1、分數(shù)加減法應用題:
分數(shù)加減法的應用題與整數(shù)加減法的應用題的結構、數(shù)量關系和解題方法基本相同,所不同的只是在已知數(shù)或未知數(shù)中含有分數(shù)。
2、分數(shù)乘法應用題:
是指已知一個數(shù),求它的幾分之幾是多少的應用題。
特征:已知單位“1”的量和分率,求與分率所對應的實際數(shù)量。
解題關鍵:準確判斷單位“1”的量。找準要求問題所對應的分率,然后根據(jù)一個數(shù)乘分數(shù)的意義正確列式。
3、分數(shù)除法應用題:
求一個數(shù)是另一個數(shù)的幾分之幾(或百分之幾)是多少。
特征:已知一個數(shù)和另一個數(shù),求一個數(shù)是另一個數(shù)的幾分之幾或百分之幾?!耙粋€數(shù)”是比較量,“另一個數(shù)”是標準量。求分率或百分率,也就是求他們的`倍數(shù)關系。
解題關鍵:從問題入手,搞清把誰看作標準的數(shù)也就是把誰看作了“單位一”,誰和單位一的量作比較,誰就作被除數(shù)。
甲是乙的幾分之幾(百分之幾):甲是比較量,乙是標準量,用甲除以乙。
甲比乙多(或少)幾分之幾(百分之幾):甲減乙比乙多(或少幾分之幾)或(百分之幾)。關系式(甲數(shù)減乙數(shù))/乙數(shù)或(甲數(shù)減乙數(shù))/甲數(shù) 。
已知一個數(shù)的幾分之幾(或百分之幾 ) ,求這個數(shù)。
特征:已知一個實際數(shù)量和它相對應的分率,求單位“1”的量。
解題關鍵:準確判斷單位“1”的量把單位“1”的量看成_根據(jù)分數(shù)乘法的意義列方程,或者根據(jù)分數(shù)除法的意義列算式,但必須找準和分率相對應的已知實際數(shù)量。
4、出勤率發(fā)芽率=發(fā)芽種子數(shù)/試驗種子數(shù)×100%
小麥的出粉率= 面粉的重量/小麥的重量×100%
產(chǎn)品的合格率=合格的產(chǎn)品數(shù)/產(chǎn)品總數(shù)×100%
職工的出勤率=實際出勤人數(shù)/應出勤人數(shù)×100%
5、工程問題:
是分數(shù)應用題的特例,它與整數(shù)的工作問題有著密切的聯(lián)系。它是探討工作總量、工作效率和工作時間三個數(shù)量之間相互關系的一種應用題。
解題關鍵:把工作總量看作單位“1”,工作效率就是工作時間的倒數(shù),然后根據(jù)題目的具體情況,靈活運用公式。
數(shù)量關系式:
工作總量=工作效率×工作時間 ;工作效率=工作總量÷工作時間
工作時間=工作總量÷工作效率 ;工作總量÷工作效率和=合作時間
6、納稅
納稅就是把根據(jù)國家各種稅法的有關規(guī)定,按照一定的比率把集體或個人收入的一部分繳納給國家。
繳納的稅款叫應納稅款。
應納稅額與各種收入的(銷售額、營業(yè)額、應納稅所得額 ……)的比率叫做稅率。
利息
存入銀行的錢叫做本金。
取款時銀行多支付的錢叫做利息。
利息與本金的比值叫做利率。
利息=本金×利率×時間
【第4篇 小升初數(shù)學分數(shù)與百分數(shù)的應用知識點總結梳理
小升初數(shù)學分數(shù)與百分數(shù)的應用知識點總結梳理
分數(shù)與百分數(shù)的應用
基本概念與性質(zhì):
分數(shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。
分數(shù)的性質(zhì):分數(shù)的分子和分母同時乘以或除以相同的數(shù)(0除外),分數(shù)的大小不變。
分數(shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。
百分數(shù):表示一個數(shù)是另一個數(shù)百分之幾的數(shù)。
常用方法:
①逆向思維方法:從題目提供條件的反方向(或結果)進行思考。
②對應思維方法:找出題目中具體的量與它所占的率的'直接對應關系。
③轉(zhuǎn)化思維方法:把一類應用題轉(zhuǎn)化成另一類應用題進行解答。最常見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關系;把不同的標準(在分數(shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標準為一倍量。
④假設思維方法:為了解題的方便,可以把題目中不相等的量假設成相等或者假設某種情況成立,計算出相應的結果,然后再進行調(diào)整,求出最后結果。
⑤量不變思維方法:在變化的各個量當中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:a、分量發(fā)生變化,總量不變。b、總量發(fā)生變化,但其中有的分量不變。c、總量和分量都發(fā)生變化,但分量之間的差量不變化。
⑥替換思維方法:用一種量代替另一種量,從而使數(shù)量關系單一化、量率關系明朗化。
⑦同倍率法:總量和分量之間按照同分率變化的規(guī)律進行處理。
⑧濃度配比法:一般應用于總量和分量都發(fā)生變化的狀況。
【第5篇 小學奧數(shù)知識點總結:分數(shù)與百分數(shù)的應用
分數(shù)與百分數(shù)的應用
基本概念與性質(zhì):
分數(shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。
分數(shù)的性質(zhì):分數(shù)的分子和分母同時乘以或除以相同的數(shù)(0除外),分數(shù)的大小不變。
分數(shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。
百分數(shù):表示一個數(shù)是另一個數(shù)百分之幾的數(shù)。
常用方法:
①逆向思維方法:從題目提供條件的反方向(或結果)進行思考。
②對應思維方法:找出題目中具體的量與它所占的率的直接對應關系。
③轉(zhuǎn)化思維方法:把一類應用題轉(zhuǎn)化成另一類應用題進行解答。最常見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關系;把不同的標準(在分數(shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標準為一倍量。
④假設思維方法:為了解題的方便,可以把題目中不相等的量假設成相等或者假設某種情況成立,計算出相應的結果,然后再進行調(diào)整,求出最后結果。
⑤量不變思維方法:在變化的各個量當中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:a、分量發(fā)生變化,總量不變。b、總量發(fā)生變化,但其中有的分量不變。c、總量和分量都發(fā)生變化,但分量之間的差量不變化。
⑥替換思維方法:用一種量代替另一種量,從而使數(shù)量關系單一化、量率關系明朗化。
⑦同倍率法:總量和分量之間按照同分率變化的規(guī)律進行處理。
⑧濃度配比法:一般應用于總量和分量都發(fā)生變化的狀況。
【第6篇 六年級數(shù)學上冊百分數(shù)知識點總結
六年級數(shù)學上冊百分數(shù)知識點總結
(一)百分數(shù)的基本概念
1.百分數(shù)的定義:表示一個數(shù)是另一個數(shù)的百分之幾的數(shù),叫做百分數(shù)。百分數(shù)也叫做百分率或百分比。
百分數(shù)表示兩個數(shù)之間的比率關系,不表示具體的數(shù)量,所以百分數(shù)不能帶單位。
2.百分數(shù)的意義:表示一個數(shù)是另一個數(shù)的百分之幾。
例如:25%的意義:表示一個數(shù)是另一個數(shù)的25%。
3.百分數(shù)通常不寫成分數(shù)形式,而在原來分子后面加上“%”來表示。分子部分可為小數(shù)、整數(shù),可以大于100,小于100或等于100。
4.小數(shù)與百分數(shù)互化的規(guī)則:
把小數(shù)化成百分數(shù),只要把小數(shù)點向右移動兩位,同時在后面添上百分號;
把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。
5.百分數(shù)與分數(shù)互化的規(guī)則:
把分數(shù)化成百分數(shù),通常先把分數(shù)化成小數(shù)(除不盡的保留三位小數(shù)),再把小數(shù)化成百分數(shù);
把百分數(shù)化成分數(shù),先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。
(二)百分數(shù)應用題
百分數(shù)應用題(一)
求增加百分之幾?減少百分之幾?
公式:增加百分之幾=增加的部分÷單位1
減少百分之幾=減少的部分÷單位1
例如:1、45立方厘米的水結成冰后,冰的體積為50立方厘米,冰的.體積比原來水的體積增加百分之幾?
解題思路:根據(jù)公式增加百分之幾=增加的部分÷單位1,先確定單位1是水,已經(jīng)知道是45:增加的部分不知道,可以利用50減45求得5;最后用增加的部分5÷單位1水的45就等于增加百分之幾。
計算步驟:第一步:單位1:水:45立方厘米
第二步:增加的部分:50—45=5立方厘米
第三步:增加百分之幾:5÷45=11.1%
2、45立方厘米的水結成冰后,體積增加了5立方厘米,冰的體積比原來水的體積增加百分之幾?
解題思路:根據(jù)公式增加百分之幾=增加的部分÷單位1,先確定單位1是水,已經(jīng)知道是45:增加的部分是5立方厘米;最后用增加的部分5÷單位1水的45就等于增加百分之幾。
計算步驟:第一步:單位1:水:45立方厘米
第二步:增加的部分: 5立方厘米
第三步:增加百分之幾:5÷45=11.1%
3、水結成冰后,體積增加了5立方厘米,冰的體積為50立方厘米,冰的體積比原來水的體積增加百分之幾?
解題思路:根據(jù)公式增加百分之幾=增加的部分÷單位1,先確定單位1是水,不知道但可以根據(jù)題目“水結成冰后,體積增加了5立方厘米”知道水是少的,冰是多的,所以可以用50—5求出水是45立方厘米。加的部分是5立方厘米;;最后用增加的部分5÷單位1水的45就等于增加百分之幾。
計算步驟:第一步:單位1:水:50—5=45立方厘米
第二步:增加的部分: 5立方厘米
第三步:增加百分之幾:5÷45=11.1%
4、“減少百分之幾與增加百分之幾”的解題方法完全相同。
5、與增加百分之幾相同的還有“多百分之幾”“提高百分之幾”
“增長百分之幾“等。
與減少百分之幾相同的還有“少百分之幾”“降低百分之幾”“節(jié)約百分之幾”等。
百分數(shù)應用題(二)
比一個數(shù)增加百分之幾的數(shù),比一個數(shù)減少百分之幾的數(shù)。
例如1、矣得小學去年有80名學生,今年的學生人數(shù)比去年增加了25%,今年有多少名學生?
解題思路:單位1去年已經(jīng)知道用乘法,增加用(1+25%)
算式:80×(1+25%)
2、矣得小學去年有80名學生,今年的學生人數(shù)比去年減少了25%,今年有多少名學生?
解題思路:單位1去年已經(jīng)知道用乘法,減少用(1-25%)
算式:80×(1-25%)
3、矣得小學今年有100名學生,比去年增加了25%,去年有多少名學生?
解題思路:單位1去年不知道用除法,增加用(1+25%)
算式:100÷(1+25%)
4、矣得小學今年有100名學生,比去年減少了25%,去年有多少名學生?
解題思路:單位1去年不知道用除法,增加用(1-25%)
算式:100÷(1-25%)
百分數(shù)應用題(三)列方程解百分數(shù)應用題
1、小明看一本書,第一天看了全書的25%,第二天看了全書的20%,第一天比第二天多看20頁,這本書一共有多少頁?
解題思路:單位1一本書不知道,可以選用方程或除法來解答。
根據(jù)“第一天比第二天多看20頁”可以知道第一天是多的,第二天是少的,第一天減去第二天等于多出的20頁。
等量關系式:第一天—第二天=20頁
方法1:解:設這本書一共有_頁。
由“第一天看了全書的25%”可以知道第一天等于全書乘以25%,用_可以表示為25%_,由“第二天看了全書的20%”可以知道第二天等于全書乘以20%,用_可以表示為20%_.依據(jù)等量關系式“第一天—第二天=20頁”可以列方程為:25%_—20%_=20
方法2:“第一天比第二天多看20頁”可以知道20頁是第一天和第二天的差。要求單位1只要用20頁除以20頁的對于分率。
列算式為:20÷(25%—20%)
2、小明看一本書,第一天看了全書的25%,第二天看了全書的20%,兩天共看了20頁,這本書一共有多少頁?
等量關系式:由“兩天共看了20頁”可以知道第一天+等二天=20頁。
方程法:解:設這本書共有_頁,則第一天為25%_,第二天為20%_。
方程列為:25%_+20%_=20
算術法:由“兩天共看了20頁”可以知道20頁是第一天和第二天的和,要求單位1只要用20頁除以20頁的對于分率。
列算式為:20÷(25%+20%)
3、小明看一本書,第一天看了全書的25%,第二天看了全書的20%,還剩20頁,這本書一共有多少頁?
等量關系式:一本書—第一天—第二天=20頁
方程法:解設這本書一共有_頁,則第一天為25%_,第二天為20%_。
列方程為:_—25%_—20%_=20
算術法:20÷(1- 25%_- 20%)
4、小明看一本書,第一天看了全書的25%,第二天比第一天多看10頁,還剩20頁,這本書一共有多少頁?
方程法:解設這本書一共有_頁,則第一天為25%_,第二天為(25%_+10)頁。
列方程為:_—25%_—(25%_+10)=20
百分數(shù)應用題(四)利息的計算
1.本金:存入銀行的錢叫做本金。
2.利息:取款時銀行多支付的錢叫做利息。
利息=本金×利率×時間
3.2008年10月9日以前國家規(guī)定,存款的利息要按20%的稅率納稅。國債的利息不納稅。2008年10月9日以后免收利息稅。所以如無特殊說明,就不在計算利息稅。
4.利率:利息與本金的比值叫做利率。
5.銀行存款稅后利息的計算公式:稅后利息=利息×(1-20%)
6.國債利息的計算公式:利息=本金×利率×時間
7.本息:本金與利息的總和叫做本息。
8.應納稅額:繳納的稅款叫應納稅額。
9.稅率:應納稅額與各種收入的比率叫做稅率。
10.應納稅額的計算:應納稅額=各種收入×稅率
例如:李老師把2000元錢存入銀行,整存整取五年,年利率按4.14%計算,到期時,李老師的本金和利息共有多少元?
解題思路:要求“本金和利息共有多少元”應該用本金的2000元加上利息的。
解題步驟:第一步:根據(jù)“利息=本金×利率×時間”算利息
利息:2000×4.14%×5=414元
第二步:本金+利息:2000+414=2414元。
例如:李老師把2000元錢存入銀行,整存整取五年,年利率按4.14%計算,到期時,李老師的本金和利息共有多少元?(如果利息按20%來上稅)
解題思路:要求“本金和利息共有多少元”應該用本金的2000元加上利息的。
解題步驟:第一步:根據(jù)“利息=本金×利率×時間”算利息
利息:2000×4.14%×5=414元
第二步:算稅后利息:414×(1—20%)=331.2元
本金+利息:2000+331.2=233.2元。
【第7篇 小升初分數(shù)與百分數(shù)的應用知識要點總結
小升初分數(shù)與百分數(shù)的應用知識要點總結
基本概念與性質(zhì):
分數(shù):把單位“1”平均分成幾份,表示這樣的一份或幾份的數(shù)。
分數(shù)的性質(zhì):分數(shù)的分子和分母同時乘以或除以相同的數(shù)(0除外),分數(shù)的大小不變。
分數(shù)單位:把單位“1”平均分成幾份,表示這樣一份的數(shù)。
百分數(shù):表示一個數(shù)是另一個數(shù)百分之幾的數(shù)。
常用方法:
①逆向思維方法:從題目提供條件的反方向(或結果)進行思考。
②對應思維方法:找出題目中具體的`量與它所占的率的直接對應關系。
③轉(zhuǎn)化思維方法:把一類應用題轉(zhuǎn)化成另一類應用題進行解答。最常見的是轉(zhuǎn)換成比例和轉(zhuǎn)換成倍數(shù)關系;把不同的標準(在分數(shù)中一般指的是一倍量)下的分率轉(zhuǎn)化成同一條件下的分率。常見的處理方法是確定不同的標準為一倍量。
④假設思維方法:為了解題的方便,可以把題目中不相等的量假設成相等或者假設某種情況成立,計算出相應的結果,然后再進行調(diào)整,求出最后結果。
⑤量不變思維方法:在變化的各個量當中,總有一個量是不變的,不論其他量如何變化,而這個量是始終固定不變的。有以下三種情況:a、分量發(fā)生變化,總量不變。b、總量發(fā)生變化,但其中有的分量不變。c、總量和分量都發(fā)生變化,但分量之間的差量不變化。
⑥替換思維方法:用一種量代替另一種量,從而使數(shù)量關系單一化、量率關系明朗化。
⑦同倍率法:總量和分量之間按照同分率變化的規(guī)律進行處理。
⑧濃度配比法:一般應用于總量和分量都發(fā)生變化的狀況。
【第8篇 小學六年級奧數(shù)計算分數(shù)和百分數(shù)知識點總結
分數(shù)
1分數(shù)的意義
把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù)叫做分數(shù)。
在分數(shù)里,中間的橫線叫做分數(shù)線;分數(shù)線下面的數(shù),叫做分母,表示把單位“1”平均分成多少份;分數(shù)線下面的數(shù)叫做分子,表示有這樣的多少份。
把單位“1”平均分成若干份,表示其中的一份的數(shù),叫做分數(shù)單位。
2分數(shù)的分類
真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。真分數(shù)小于1。
假分數(shù):分子比分母大或者分子和分母相等的分數(shù),叫做假分數(shù)。假分數(shù)大于或等于1。
帶分數(shù):假分數(shù)可以寫成整數(shù)與真分數(shù)合成的數(shù),通常叫做帶分數(shù)。
3約分和通分
把一個分數(shù)化成同它相等但是分子、分母都比較小的分數(shù),叫做約分。分子分母是互質(zhì)數(shù)的分數(shù),叫做最簡分數(shù)。
把異分母分數(shù)分別化成和原來分數(shù)相等的同分母分數(shù),叫做通分。
百分數(shù)
表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)叫做百分數(shù),也叫做百分率
或百分比。百分數(shù)通常用“%”來表示。百分號是表示百分數(shù)的符號。
【第9篇 小升初數(shù)學百分數(shù)應用知識點總結
求增加百分之幾?減少百分之幾?
公式:增加百分之幾=增加的部分÷單位1
減少百分之幾=減少的部分÷單位1
例如:
1、45立方厘米的水結成冰后,冰的體積為50立方厘米,冰的體積比原來水的體積增加百分之幾?
解題思路:根據(jù)公式增加百分之幾=增加的部分÷單位1,先確定單位1是水,已經(jīng)知道是45:增加的部分不知道,可以利用50減45求得5;最后用增加的部分5÷單位1水的45就等于增加百分之幾。
計算步驟:第一步:單位1:水:45立方厘米
第二步:增加的部分:50—45=5立方厘米
第三步:增加百分之幾:5÷45=11.1%
2、45立方厘米的水結成冰后,體積增加了5立方厘米,冰的體積比原來水的體積增加百分之幾?
解題思路:根據(jù)公式增加百分之幾=增加的部分÷單位1,先確定單位1是水,已經(jīng)知道是45:增加的部分是5立方厘米;最后用增加的部分5÷單位1水的45就等于增加百分之幾。
計算步驟:第一步:單位1:水:45立方厘米
第二步:增加的部分:5立方厘米
第三步:增加百分之幾:5÷45=11.1%
3、水結成冰后,體積增加了5立方厘米,冰的體積為50立方厘米,冰的體積比原來水的體積增加百分之幾?
解題思路:根據(jù)公式增加百分之幾=增加的部分÷單位1,先確定單位1是水,不知道但可以根據(jù)題目“水結成冰后,體積增加了5立方厘米”知道水是少的,冰是多的,所以可以用50—5求出水是45立方厘米。加的部分是5立方厘米;;最后用增加的部分5÷單位1水的45就等于增加百分之幾。
計算步驟:第一步:單位1:水:50—5=45立方厘米
第二步:增加的部分:5立方厘米
第三步:增加百分之幾:5÷45=11.1%
4、“減少百分之幾與增加百分之幾”的解題方法完全相同。
5、與增加百分之幾相同的還有“多百分之幾”“提高百分之幾”“增長百分之幾”等。
與減少百分之幾相同的還有“少百分之幾”“降低百分之幾”“節(jié)約百分之幾”等。
百分數(shù)應用題
【第10篇 百分數(shù)知識點的學習總結
百分數(shù)知識點的學習總結
百分數(shù)知識點總結
1.百分數(shù)的定義:表示一個數(shù)是另一個數(shù)的百分之幾的數(shù),叫做百分數(shù),百分數(shù)也叫做百分率或百分比。
百分數(shù)表示兩個數(shù)之間的比率關系,不表示具體的數(shù)量,無單位名稱。
例如:25%的意義:表示一個數(shù)是另一個數(shù)的25%。
2.百分數(shù)通常不寫成分數(shù)形式,而在原來分子后面加上“%”來表示。分子部分可為小數(shù)、整數(shù),可以大于100,小于100或等于100。
3.小數(shù)與百分數(shù)互化的規(guī)則:
把小數(shù)化成百分數(shù),只要把小數(shù)點向右移動兩位,同時在后面添上百分號;(加向右)
把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。(去向左)
4.百分數(shù)與分數(shù)互化的規(guī)則:
把分數(shù)化成百分數(shù),通常先把分數(shù)化成小數(shù)(除不盡的保留三位小數(shù)),再把小數(shù)化成百分數(shù);
把百分數(shù)化成分數(shù),先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。
5、常用的分數(shù)、小數(shù)及百分數(shù)的'互化
6.百分率公式:求百分率就是求一個數(shù)是另一個數(shù)的百分之幾。(算式要加×100%,包括濃度、利潤率)
百分數(shù)的意義
如果要真正地理解百分數(shù)的意義和正確地使用它是存在著許多的問題。雖然大多數(shù)人都知道百分數(shù),但是在平時生活中卻似乎不常使用分數(shù),實際上只要細心就會發(fā)現(xiàn),其實生活中處處存在著百分數(shù)的例子比如超市的折扣就是百分數(shù)的應用。初中教育的考試測試中,雖然不是直接地對百分數(shù)的意義進行考察,但是,運用各種題型,掌握各種類型的百分數(shù)的題目,并且能真正地運用它,是非常重要的。下面進行簡單的描述。
百分數(shù)的意義是能在生產(chǎn)生活中能將事物占總體的比例形容的更加完整,讓省去許多不必要的言語,簡易而恰當。下面有幾種情況值得了解。
舉例來說:(一),百分數(shù)雖然是以100為分母,但是分子的數(shù)也可以大于100的。這是很多人不了解的,以為分子大于100是不可能的,但是卻是確確實實存在的。如200%表示的是原本數(shù)字的2倍關系。舉例子來說:一個書店上半年的存利潤是10萬元,而下半年的存利潤是12萬元,那么則可以表示成“上半年存利潤比下半年的存利潤增加20%即120%”。
(二)百分數(shù)有時也會造成誤會,這就要我們認真地去區(qū)分。例如:不少人認為一個百分比的上升會被相同下降的百分比所消。舉一個例子來說: 10增加50%,就等于10+5=15,,而如果從15下降50%則為15-7.5=7.5.最終的結果是小于10.這樣的誤區(qū)是因為不了解百分數(shù)的意義。
總的來說,掌握了百分數(shù)的意義是什么對做題和生活算數(shù)都有幫助,對于一些概念的掌握不是單純的死記硬背,而要真正地了解它。那么怎樣才能真的了解它?就只有細心的去分析百分數(shù)的具體應用,多做這方面的練習,從而更多的了解百分數(shù)在生活中的具體應用,然后熟練描述生活中涉及百分數(shù)的事件,這樣才能變得不再是百分數(shù)的未知者,從而對百分數(shù)的意義了解的更加透徹。