【第1篇 初中數(shù)學知識點總結(jié)之推理與證明
初中數(shù)學知識點總結(jié)之推理與證明
一、公理、定理、推論、逆定理:
1.公認的真命題叫做公理。
2.其他真命題的正確性都通過推理的方法證實,經(jīng)過證明的真命題稱為定理。
3.由一個公理或定理直接推出的定理,叫做這個公理或定理的推論。
4.如果一個定理的逆命題是真命題,那么這個逆命題就叫原定理的逆定理。
二、類比推理:
一道數(shù)學題是由已知條件、解決辦法、欲證結(jié)論三個要素組成,這此要求可以看作是數(shù)學試題的屬性。如果兩道數(shù)學題是在一系列屬性上相似,或一道是由另一道題來的',這時,就可以運用類比推理的方法,推測其中一道題的屬性在另一道題中也存在相同或相似的屬性。
三、證明:
1.對某個命題進行推理的過程稱為證明,證明的過程包括已知、求證、證明
2.證明的一般步驟:
(1)審清題意,明確條件和結(jié)論;
(2)根據(jù)題意,畫出圖形;
(3)根據(jù)條件、結(jié)論,結(jié)合圖形,寫出已知求證;
(4)對條件與結(jié)論進行分析;
(5)根據(jù)分析,寫出證明過程
3.證明常用的方法:綜合法、分析法和反證法。
四、輔助線在證明中的應用:
在幾何題的證明中,有時了為證明需要,在原題的圖形上添加一些線度,這些線段叫做輔助線,常用虛線表示。并在證明的開始,寫出添加過程,在證明中添加的輔助線可作為已知條件參與證明。
常見考法
(1)靈活運用基礎(chǔ)知識進行推理,運用綜合法、分析法,從條件和結(jié)論兩方面出發(fā)進行證明;
(2)在中考中,考查類比推理,先設(shè)計一個條件、結(jié)論明確的問題,以此作為類比對象,然后再對其改造 。比如,圖形的變式,添加某些新的屬性或改變某些屬性,通過與原有問題的比較,推測新問題的結(jié)論與解決方法。
誤區(qū)提醒
(1)不能準確把握幾何公理、定理的內(nèi)容;
(2)數(shù)學語言、符號語言、文字語言在相互轉(zhuǎn)化中出現(xiàn)表述錯誤。
【第2篇 高中數(shù)學知識點總結(jié):推理與證明重難點
高中數(shù)學知識點總結(jié):推理與證明重難點
忽視數(shù)學的人是無法了解任何其他科學乃至世界上任何其他事物的。下面小編準備了推理與證明重難點的高中數(shù)學知識點,具體請看以下內(nèi)容。
一、合情推理
1.歸納推理是由部分到整體,由個別到一般的推理,在進行歸納時,要先根據(jù)已知的部分個體,把它們適當變形,找出它們之間的聯(lián)系,從而歸納出一般結(jié)論;
2.類比推理是由特殊到特殊的推理,是兩類類似的對象之間的推理,其中一個對象具有某個性質(zhì),則另一個對象也具有類似的性質(zhì)。在進行類比時,要充分考慮已知對象性質(zhì)的推理過程,然后類比推導類比對象的性質(zhì)。
二、演繹推理
演繹推理是由一般到特殊的推理,數(shù)學的證明過程主要是通過演繹推理進行的,只要采用的演繹推理的大前提、小前提和推理形式是正確的',其結(jié)論一定是正確,一定要注意推理過程的正確性與完備性。
三、直接證明與間接證明
直接證明是相對于間接證明說的,綜合法和分析法是兩種常見的直接證明。綜合法 一般地,利用已知條件和某些數(shù)學定義、定理、公理等,經(jīng)過一系列的推理論證,最后推導出所要證明的結(jié)論成立,這種證明方法叫做綜合法(或順推證法、由因?qū)Ч?。分析法 一般地,從要證明的結(jié)論出發(fā),逐步尋求使它成立的充分條件,直至最后,把要證明的結(jié)論歸結(jié)為判定一個明顯成立的條件(已知條件、定理、定義、公理等)為止,這種證明方法叫做分析法。
間接證明是相對于直接證明說的,反證法是間接證明常用的方法。假設(shè)原命題不成立,經(jīng)過正確的推理,最后得出矛盾,因此說明假設(shè)錯誤,從而證明原命題成立,這種證明方法叫做反證法。
四、數(shù)學歸納法
數(shù)學上證明與自然數(shù)n有關(guān)的命題的一種特殊方法,它主要用來研究與正整數(shù)有關(guān)的數(shù)學問題,在高中數(shù)學中常用來證明等式成立和數(shù)列通項公式成立。
【第3篇 2023中考數(shù)學知識點總結(jié):推理與證明
知識點總結(jié)
一、公理、定理、推論、逆定理:
1.公認的真命題叫做公理。
2.其他真命題的正確性都通過推理的方法證實,經(jīng)過證明的真命題稱為定理。3.由一個公理或定理直接推出的定理,叫做這個公理或定理的推論。4.如果一個定理的逆命題是真命題,那么這個逆命題就叫原定理的逆定理。
二、類比推理:
一道數(shù)學題是由已知條件、解決辦法、欲證結(jié)論三個要素組成,這此要求可以看作是數(shù)學試題的屬性。如果兩道數(shù)學題是在一系列屬性上相似,或一道是由另一道題來的,這時,就可以運用類比推理的方法,推測其中一道題的屬性在另一道題中也存在相同或相似的屬性。
三、證明:
1.對某個命題進行推理的過程稱為證明,證明的過程包括已知、求證、證明
2.證明的一般步驟:
(1)審清題意,明確條件和結(jié)論;
(2)根據(jù)題意,畫出圖形;
(3)根據(jù)條件、結(jié)論,結(jié)合圖形,寫出已知求證;
(4)對條件與結(jié)論進行分析;
(5)根據(jù)分析,寫出證明過程
3.證明常用的方法:綜合法、分析法和反證法。
四、輔助線在證明中的應用:
在幾何題的證明中,有時了為證明需要,在原題的圖形上添加一些線度,這些線段叫做輔助線,常用虛線表示。并在證明的開始,寫出添加過程,在證明中添加的輔助線可作為已知條件參與證明。
常見考法
(1)靈活運用基礎(chǔ)知識進行推理,運用綜合法、分析法,從條件和結(jié)論兩方面出發(fā)進行證明;(2)在中考中,考查類比推理,先設(shè)計一個條件、結(jié)論明確的問題,以此作為類比對象,然后再對其改造 。比如,圖形的變式,添加某些新的屬性或改變某些屬性,通過與原有問題的比較,推測新問題的結(jié)論與解決方法。
誤區(qū)提醒
(1)不能準確把握幾何公理、定理的內(nèi)容;
(2)數(shù)學語言、符號語言、文字語言在相互轉(zhuǎn)化中出現(xiàn)表述錯誤。
中考數(shù)學知識點
圓的證明歌:圓的證明不算難,常把半徑直徑連;有弦可作弦心距,它定垂直平分弦;直徑是圓弦,直圓周角立上邊,它若垂直平分弦,垂徑、射影響耳邊;還有與圓有關(guān)角,勿忘相互有關(guān)聯(lián),圓周、圓心、弦切角,細找關(guān)系把線連。同弧圓周角相等,證題用它最多見,圓中若有弦切角,夾弧找到就好辦;圓有內(nèi)接四邊形,對角互補記心間,外角等于內(nèi)對角,四邊形定內(nèi)接圓;直角相對或共弦,試試加個輔助圓;若是證題打轉(zhuǎn)轉(zhuǎn),四點共圓可解難;要想證明圓切線,垂直半徑過外端,直線與圓有共點,證垂直來半徑連,直線與圓未給點,需證半徑作垂線;四邊形有內(nèi)切圓,對邊和等是條件;如果遇到圓與圓,弄清位置很關(guān)鍵,兩圓相切作公切,兩圓相交連公弦。
圓中比例線段:遇等積,改等比,橫找豎找定相似;不相似,別生氣,等線等比來代替,遇等比,改等積,引用射影和圓冪,平行線,轉(zhuǎn)比例,兩端各自找聯(lián)系。
正多邊形訣竅歌:份相等分割圓,n值必須大于三,依次連接各分點,內(nèi)接正n邊形在眼前.
經(jīng)過分點做切線,切線相交n個點.n個交點做頂點,外切正n邊形便出現(xiàn).正n邊形很美觀,它有內(nèi)接,外切圓,內(nèi)接、外切都,兩圓還是同心圓,它的圖形軸對稱,n條對稱軸都過圓心點,如果n值為偶數(shù),中心對稱很方便.正n邊形做計算,邊心距、半徑是關(guān)鍵,內(nèi)切、外接圓半徑,邊心距、半徑分別換,分成直角三角形2n個整,依此計算便簡單.
函數(shù)學習口決:正比例函數(shù)是直線,圖象一定過圓點,k的正負是關(guān)鍵,決定直線的象限,負k經(jīng)過二四限,_增大y在減,上下平移k不變,由引得到一次線,向上加b向下減,圖象經(jīng)過三個限,兩點決定一條線,選定系數(shù)是關(guān)鍵。
反比例函數(shù)雙曲線,待定只需一個點,正k落在一三限,_增大y在減,圖象上面任意點,矩形面積都不變,對稱軸是角分線_、y的順序可交換。
二次函數(shù)拋物線,選定需要三個點,a的正負開口判,c的大小y軸看,△的符號最簡便,_軸上數(shù)交點,a、b同號軸左邊拋物線平移a不變,頂點牽著圖象轉(zhuǎn),三種形式可變換,配方法作用最關(guān)鍵。