- 目錄
-
第1篇初三年級(jí)2023數(shù)學(xué)實(shí)數(shù)知識(shí)點(diǎn)總結(jié) 第2篇2023初二年級(jí)奧數(shù)實(shí)數(shù)知識(shí)點(diǎn)總結(jié) 第3篇初三數(shù)學(xué)上冊(cè)實(shí)數(shù)知識(shí)點(diǎn)總結(jié) 第4篇八年級(jí)實(shí)數(shù)知識(shí)點(diǎn)總結(jié) 第5篇初中奧數(shù)實(shí)數(shù)知識(shí)點(diǎn)總結(jié) 第6篇九年級(jí)上冊(cè)數(shù)學(xué)實(shí)數(shù)知識(shí)點(diǎn)總結(jié)
【第1篇 初三年級(jí)2023數(shù)學(xué)實(shí)數(shù)知識(shí)點(diǎn)總結(jié)
★重點(diǎn)★ 實(shí)數(shù)的有關(guān)概念及性質(zhì),實(shí)數(shù)的運(yùn)算
☆內(nèi)容提要☆
一、 重要概念
1.數(shù)的分類(lèi)及概念
數(shù)系表:
說(shuō)明:“分類(lèi)”的原則:1)相稱(chēng)(不重、不漏)
2)有標(biāo)準(zhǔn)
2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱(chēng)。(表為:_≥0)
常見(jiàn)的非負(fù)數(shù)有:
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)擔(dān)數(shù)均為0。
3.倒數(shù): ①定義及表示法
②性質(zhì):a.a≠1/a(a≠±1);b.1/a中,a≠0;c.01;a>1時(shí),1/a<1;d.積為1。
4.相反數(shù): ①定義及表示法
②性質(zhì):a.a≠0時(shí),a≠-a;b.a與-a在數(shù)軸上的位置;c.和為0,商為-1。
5.數(shù)軸:①定義(“三要素”)
②作用:a.直觀地比較實(shí)數(shù)的大小;b.明確體現(xiàn)絕對(duì)值意義;c.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)—自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對(duì)值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。
②│a│≥0,符號(hào)“││”是“非負(fù)數(shù)”的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類(lèi)型的題目,只要其中有“││”出現(xiàn),其關(guān)鍵一步是去掉“││”符號(hào)。
二、 實(shí)數(shù)的運(yùn)算
1. 運(yùn)算法則(加、減、乘、除、乘方、開(kāi)方)
2. 運(yùn)算定律(五個(gè)—加法[乘法]交換律、結(jié)合律;[乘法對(duì)加法的]
分配律)
3. 運(yùn)算順序:a.高級(jí)運(yùn)算到低級(jí)運(yùn)算;b.(同級(jí)運(yùn)算)從“左”
到“右”(如5÷ ×5);c.(有括號(hào)時(shí))由“小”到“中”到“大”。
三、 應(yīng)用舉例(略)
附:典型例題
1. 已知:a、b、_在數(shù)軸上的位置如下圖,求證:│_-a│+│_-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號(hào)。
【第2篇 2023初二年級(jí)奧數(shù)實(shí)數(shù)知識(shí)點(diǎn)總結(jié)
實(shí)數(shù)可以用通過(guò)收斂于一個(gè)實(shí)數(shù)的十進(jìn)制或二進(jìn)制展開(kāi)如 {3, 3.1, 3.14, 3.141, 3.1415,…} 所定義的序列的方式而構(gòu)造為有理數(shù)的補(bǔ)全。實(shí)數(shù)可以不同方式從有理數(shù)構(gòu)造出來(lái)。這里給出其中一種,其他方法請(qǐng)?jiān)斠?jiàn)實(shí)數(shù)的構(gòu)造。
公理的方法設(shè) r 是所有實(shí)數(shù)的集合,則:
集合 r 是一個(gè)域: 可以作加、減、乘、除運(yùn)算,且有如交換律,結(jié)合律等常見(jiàn)性質(zhì)。
域 r 是個(gè)有序域,即存在全序關(guān)系≥ ,對(duì)所有實(shí)數(shù) _, y 和 z:
若 _ ≥ y 則 _ + z ≥ y + z;
若 _ ≥ 0 且 y ≥ 0 則 _y ≥ 0。
集合 r 滿足完備性,即任意 r 的有空子集s ( s∈r,s≠φ),若 s 在 r 內(nèi)有上界,那么 s 在 r 內(nèi)有上確界。
最后一條是區(qū)分實(shí)數(shù)和有理數(shù)的關(guān)鍵。例如所有平方小于 2 的有理數(shù)的集合存在有理數(shù)上界,如 1.5;但是不存在有理數(shù)上確界(因?yàn)?√2 不是有理數(shù))。
實(shí)數(shù)通過(guò)上述性質(zhì)確定。更準(zhǔn)確的說(shuō),給定任意兩個(gè)有序域 r1 和 r2,存在從 r1 到 r2 的的域同構(gòu),即代數(shù)學(xué)上兩者可看作是相同的。
相關(guān)性質(zhì)基本運(yùn)算
實(shí)數(shù)可實(shí)現(xiàn)的基本運(yùn)算有加、減、乘、除、乘方等,對(duì)非負(fù)數(shù)(即正數(shù)和0)還可以進(jìn)行開(kāi)方運(yùn)算。實(shí)數(shù)加、減、乘、除(除數(shù)不為零)、平方后結(jié)果還是實(shí)數(shù)。任何實(shí)數(shù)都可以開(kāi)奇次方,結(jié)果仍是實(shí)數(shù),只有非負(fù)實(shí)數(shù),才能開(kāi)偶次方其結(jié)果還是實(shí)數(shù)。
【第3篇 初三數(shù)學(xué)上冊(cè)實(shí)數(shù)知識(shí)點(diǎn)總結(jié)
一、 重要概念 1.數(shù)的分類(lèi)及概念 數(shù)系表:
說(shuō)明:'分類(lèi)'的原則:1)相稱(chēng)(不重、不漏) 2)有標(biāo)準(zhǔn)
2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱(chēng)。(表為:_≥0)
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。
3.倒數(shù): ①定義及表示法
②性質(zhì):a.a≠1/a(a≠±1);b.1/a中,a≠0;c.01;a>1時(shí),1/a<1;d.積為1。
4.相反數(shù): ①定義及表示法
②性質(zhì):a.a≠0時(shí),a≠-a;b.a與-a在數(shù)軸上的位置;c.和為0,商為-1。
5.數(shù)軸:①定義('三要素')
②作用:a.直觀地比較實(shí)數(shù)的大小;b.明確體現(xiàn)絕對(duì)值意義;c.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)-自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對(duì)值:①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。
②│a│≥0,符號(hào)'││'是'非負(fù)數(shù)'的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類(lèi)型的題目,只要其中有'││'出現(xiàn),其關(guān)鍵一步是去掉'││'符號(hào)。
二、 實(shí)數(shù)的運(yùn)算
1. 運(yùn)算法則(加、減、乘、除、乘方、開(kāi)方)
2. 運(yùn)算定律(五個(gè)-加法[乘法]交換律、結(jié)合律;[乘法對(duì)加法的]
分配律)
3. 運(yùn)算順序:a.高級(jí)運(yùn)算到低級(jí)運(yùn)算;b.(同級(jí)運(yùn)算)從'左'
到'右'(如5÷ ×5);c.(有括號(hào)時(shí))由'小'到'中'到'大'。
三、 應(yīng)用舉例(略)
附:典型例題
1. 已知:a、b、_在數(shù)軸上的位置如下圖,求證:│_-a│+│_-b│
=b-a.
2.已知:a-b=-2且ab<0,(a≠0,b≠0),判斷a、b的符號(hào)。
【第4篇 八年級(jí)實(shí)數(shù)知識(shí)點(diǎn)總結(jié)
八年級(jí)實(shí)數(shù)知識(shí)點(diǎn)總結(jié)
一、數(shù)軸:
⑴數(shù)軸:規(guī)定了原點(diǎn)、正方向和單位長(zhǎng)度的直線。⑵實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的
二、相反數(shù):
⑴相反數(shù):只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零。
⑵在一個(gè)數(shù)的前面添上“-”號(hào),就成為這個(gè)數(shù)的相反數(shù)。即實(shí)數(shù)的相反數(shù)是;
在數(shù)軸上表示相反數(shù)的兩點(diǎn)以原點(diǎn)對(duì)稱(chēng)。
⑶互為相反數(shù)
三、倒數(shù):
⑴倒數(shù):1除以一個(gè)不等于零的數(shù)的商叫做這個(gè)數(shù)的倒數(shù)。
⑵互為倒數(shù)(3)0沒(méi)有倒數(shù)
四、絕對(duì)值:
⑴絕對(duì)值:一個(gè)正數(shù)的絕對(duì)值是它本身,
一個(gè)負(fù)數(shù)的絕對(duì)值是它的相反數(shù),
零的絕對(duì)值是零⑵一個(gè)數(shù)的絕對(duì)值就是表示這個(gè)數(shù)的點(diǎn)離開(kāi)原點(diǎn)的'距離。
五.方根的有關(guān)概念:
⑴平方根:如果,那么叫做a的平方根。記作,
其中叫做a的算術(shù)平方根。
正數(shù)有兩個(gè)平方根,它們互為相反數(shù);零的平方根是零(一個(gè))。負(fù)數(shù)沒(méi)有平方根。
⑵立方根:如果(為一切實(shí)數(shù)),那么叫做a的立方根,記作。
正數(shù)有一個(gè)正的立方根;零的立方根是零;負(fù)數(shù)有一個(gè)負(fù)的立方根。
六.有關(guān)實(shí)數(shù)的非負(fù)性:,,
七.幾個(gè)重要的運(yùn)算律:
(1)加法的交換律:a+b=b+a(2)加法的結(jié)合律:(a+b)+c=a+(b+c)
(3)乘法的交換律:ab=ba(4)加法的結(jié)合律:(ab)c=a(bc)
(5)乘法對(duì)加法的分配律:a(b+c)=ab+ac
實(shí)數(shù)的運(yùn)算主要有:加、減、乘、除、乘方、開(kāi)方.
實(shí)數(shù)的運(yùn)算順序:先乘方、開(kāi)方,再乘、除,最后算加、減,有括號(hào)的先算括號(hào)里面的.
八.實(shí)數(shù)分類(lèi)。
【第5篇 初中奧數(shù)實(shí)數(shù)知識(shí)點(diǎn)總結(jié)
1、相反數(shù) 實(shí)數(shù)與它的相反數(shù)時(shí)一對(duì)數(shù)(只有符號(hào)不同的兩個(gè)數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個(gè)數(shù)所對(duì)應(yīng)的點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),如果a與b互為相反數(shù),則有a+b=0,a=-b,反之亦成立。
2、絕對(duì)值
一個(gè)數(shù)的絕對(duì)值就是表示這個(gè)數(shù)的點(diǎn)與原點(diǎn)的距離,|a|≥0。零的絕對(duì)值時(shí)它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。正數(shù)大于零,負(fù)數(shù)小于零,正數(shù)大于一切負(fù)數(shù),兩個(gè)負(fù)數(shù),絕對(duì)值大的反而小。
3、倒數(shù)
如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒(méi)有倒數(shù)。
【第6篇 九年級(jí)上冊(cè)數(shù)學(xué)實(shí)數(shù)知識(shí)點(diǎn)總結(jié)
九年級(jí)上冊(cè)數(shù)學(xué)實(shí)數(shù)知識(shí)點(diǎn)總結(jié)
一、 重要概念
1.數(shù)的分類(lèi)及概念 數(shù)系表:
說(shuō)明:分類(lèi)的原則:1)相稱(chēng)(不重、不漏) 2)有標(biāo)準(zhǔn)
2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱(chēng)。(表為:_0)
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。
3.倒數(shù):
①定義及表示法
②性質(zhì):a.a1/a(a1);b.1/a中,aa1時(shí),1/ad.積為1。
4.相反數(shù):
①定義及表示法
②性質(zhì):a.a0時(shí),ab.a與-a在數(shù)軸上的位置;c.和為0,商為-1。
5.數(shù)軸:
①定義(三要素)
②作用:a.直觀地比較實(shí)數(shù)的'大小;b.明確體現(xiàn)絕對(duì)值意義;c.建立點(diǎn)與實(shí)數(shù)的一一對(duì)應(yīng)關(guān)系。
6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)-自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對(duì)值:
①定義(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對(duì)值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離。
②│a│0,符號(hào)││是非負(fù)數(shù)的標(biāo)志;③數(shù)a的絕對(duì)值只有一個(gè);④處理任何類(lèi)型的題目,只要其中有││出現(xiàn),其關(guān)鍵一步是去掉││符號(hào)。
二、 實(shí)數(shù)的運(yùn)算
1. 運(yùn)算法則(加、減、乘、除、乘方、開(kāi)方)
2. 運(yùn)算定律(五個(gè)-加法[乘法]交換律、結(jié)合律;[乘法對(duì)加法的]分配律)
3. 運(yùn)算順序:a.高級(jí)運(yùn)算到低級(jí)運(yùn)算;b.(同級(jí)運(yùn)算)從左
到右(如5 c.(有括號(hào)時(shí))由小到中到大。
三、 應(yīng)用舉例(略)
附:典型例題
1. 已知:a、b、_在數(shù)軸上的位置如下圖,求證:│_-a│+│_-b│
=b-a.
2.已知:a-b=-2且ab0,(a0,b0),判斷a、b的符號(hào)。
小編為大家整理的初三上冊(cè)數(shù)學(xué)實(shí)數(shù)知識(shí)點(diǎn)總結(jié)相關(guān)內(nèi)容大家一定要牢記,以便不斷提高自己的數(shù)學(xué)成績(jī),祝大家學(xué)習(xí)愉快!