- 目錄
-
第1篇2023高一數(shù)學(xué)知識點(diǎn)總結(jié)集合 第2篇高一數(shù)學(xué)知識點(diǎn)總結(jié)集合 第3篇2023年高一數(shù)學(xué)知識點(diǎn)總結(jié) 第4篇高一數(shù)學(xué)知識點(diǎn)總結(jié)(定理) 第5篇兩個(gè)平面的位置關(guān)系高一數(shù)學(xué)知識點(diǎn)總結(jié) 第6篇高一數(shù)學(xué)知識點(diǎn)總結(jié):函數(shù)的有關(guān)概念 第7篇高一數(shù)學(xué)知識點(diǎn)歸納總結(jié) 第8篇蘇教版高一數(shù)學(xué)知識點(diǎn)總結(jié) 第9篇人教版高一數(shù)學(xué)知識點(diǎn)總結(jié) 第10篇立體幾何高一數(shù)學(xué)知識點(diǎn)總結(jié) 第11篇高一數(shù)學(xué)知識點(diǎn)總結(jié) 第12篇函數(shù)定義域函數(shù)值域高一數(shù)學(xué)知識點(diǎn)總結(jié) 第13篇高一數(shù)學(xué)知識點(diǎn)冪函數(shù)的總結(jié) 第14篇一次函數(shù)高一數(shù)學(xué)知識點(diǎn)總結(jié) 第15篇《函數(shù)的對稱性》高一數(shù)學(xué)知識點(diǎn)總結(jié)
【第1篇 2023高一數(shù)學(xué)知識點(diǎn)總結(jié)集合
XX高一數(shù)學(xué)集合知識點(diǎn)總結(jié)
一.知識歸納:
1.集合的有關(guān)概念。
1)集合(集):某些指定的對象集在一起就成為一個(gè)集合(集).其中每一個(gè)對象叫元素
注意:①集合與集合的元素是兩個(gè)不同的概念,教科書中是通過描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。
②集合中的元素具有確定性(a?a和a?a,二者必居其一)、互異性(若a?a,b?a,則a≠b)和無序性({a,b}與{b,a}表示同一個(gè)集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數(shù)集:n,z,q,r,n_
2.子集、交集、并集、補(bǔ)集、空集、全集等概念。
1)子集:若對_∈a都有_∈b,則a b(或a b);
2)真子集:a b且存在_0∈b但_0 a;記為a b(或 ,且 )
3)交集:a∩b={_| _∈a且_∈b}
4)并集:a∪b={_| _∈a或_∈b}
5)補(bǔ)集:cua={_| _ a但_∈u}
注意:①? a,若a≠?,則? a ;
②若 , ,則 ;
③若 且 ,則a=b(等集)
3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1) 與 、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。
4.有關(guān)子集的幾個(gè)等價(jià)關(guān)系
①a∩b=a a b;②a∪b=b a b;③a b c ua c ub;
④a∩cub = 空集 cua b;⑤cua∪b=i a b。
5.交、并集運(yùn)算的性質(zhì)
①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a;
③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub;
6.有限子集的個(gè)數(shù):設(shè)集合a的元素個(gè)數(shù)是n,則a有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。
二.例題講解:
【例1】已知集合m={_|_=m+ ,m∈z},n={_|_= ,n∈z},p={_|_= ,p∈z},則m,n,p滿足關(guān)系
a) m=n p b) m n=p c) m n p d) n p m
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對于集合m:{_|_= ,m∈z};對于集合n:{_|_= ,n∈z}
對于集合p:{_|_= ,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以m n=p,故選b。
分析二:簡單列舉集合中的元素。
解答二:m={…, ,…},n={…, , , ,…},p={…, , ,…},這時(shí)不要急于判斷三個(gè)集合間的關(guān)系,應(yīng)分析各集合中不同的元素。
= ∈n, ∈n,∴m n,又 = m,∴m n,
= p,∴n p 又 ∈n,∴p n,故p=n,所以選b。
點(diǎn)評:由于思路二只是停留在最初的歸納假設(shè),沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設(shè)集合 , ,則( b )
a.m=n b.m n c.n m d.
解:
當(dāng) 時(shí),2k+1是奇數(shù),k+2是整數(shù),選b
【例2】定義集合a_b={_|_∈a且_ b},若a={1,3,5,7},b={2,3,5},則a_b的子集個(gè)數(shù)為
a)1 b)2 c)3 d)4
分析:確定集合a_b子集的個(gè)數(shù),首先要確定元素的個(gè)數(shù),然后再利用公式:集合a={a1,a2,…,an}有子集2n個(gè)來求解。
解答:∵a_b={_|_∈a且_ b}, ∴a_b={1,7},有兩個(gè)元素,故a_b的子集共有22個(gè)。選d。
變式1:已知非空集合m {1,2,3,4,5},且若a∈m,則6?a∈m,那么集合m的個(gè)數(shù)為
a)5個(gè) b)6個(gè) c)7個(gè) d)8個(gè)
變式2:已知{a,b} a {a,b,c,d,e},求集合a.
解:由已知,集合中必須含有元素a,b.
集合a可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評析 本題集合a的個(gè)數(shù)實(shí)為集合{c,d,e}的真子集的個(gè)數(shù),所以共有 個(gè) .
【例3】已知集合a={_|_2+px+q=0},b={_|_2?4_+r=0},且a∩b={1},a∪b={?2,1,3},求實(shí)數(shù)p,q,r的值。
解答:∵a∩b={1} ∴1∈b ∴12?4×1+r=0,r=3.
∴b={_|_2?4_+r=0}={1,3}, ∵a∪b={?2,1,3},?2 b, ∴?2∈a
∵a∩b={1} ∴1∈a ∴方程_2+px+q=0的兩根為-2和1,
∴ ∴
變式:已知集合a={_|_2+b_+c=0},b={_|_2+m_+6=0},且a∩b={2},a∪b=b,求實(shí)數(shù)b,c,m的值.
解:∵a∩b={2} ∴1∈b ∴22+m?2+6=0,m=-5
∴b={_|_2-5_+6=0}={2,3} ∵a∪b=b ∴
又 ∵a∩b={2} ∴a={2} ∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合a={_|(_-1)(_+1)(_+2)>0},集合b滿足:a∪b={_|_>-2},且a∩b={_|1
分析:先化簡集合a,然后由a∪b和a∩b分別確定數(shù)軸上哪些元素屬于b,哪些元素不屬于b。
解答:a={_|-21}。由a∩b={_|1-2}可知[-1,1] b,而(-∞,-2)∩b=ф。
綜合以上各式有b={_|-1≤_≤5}
變式1:若a={_|_3+2_2-8_>0},b={_|_2+a_+b≤0},已知a∪b={_|_>-4},a∩b=φ,求a,b。(答案:a=-2,b=0)
點(diǎn)評:在解有關(guān)不等式解集一類集合問題,應(yīng)注意用數(shù)形結(jié)合的方法,作出數(shù)軸來解之。
變式2:設(shè)m={_|_2-2_-3=0},n={_|a_-1=0},若m∩n=n,求所有滿足條件的a的集合。
解答:m={-1,3} , ∵m∩n=n, ∴n m
①當(dāng) 時(shí),a_-1=0無解,∴a=0 ②
綜①②得:所求集合為{-1,0, }
【例5】已知集合 ,函數(shù)y=log2(a_2-2_+2)的定義域?yàn)閝,若p∩q≠φ,求實(shí)數(shù)a的取值范圍。
分析:先將原問題轉(zhuǎn)化為不等式a_2-2_+2>0在 有解,再利用參數(shù)分離求解。
解答:(1)若 , 在 內(nèi)有有解
令 當(dāng) 時(shí),
所以a>-4,所以a的取值范圍是
變式:若關(guān)于_的方程 有實(shí)根,求實(shí)數(shù)a的取值范圍。
解答:
點(diǎn)評:解決含參數(shù)問題的題目,一般要進(jìn)行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關(guān)鍵。
【第2篇 高一數(shù)學(xué)知識點(diǎn)總結(jié)集合
一.知識歸納:
1.集合的有關(guān)概念。
1)集合(集):某些指定的對象集在一起就成為一個(gè)集合(集).其中每一個(gè)對象叫元素
注意:①集合與集合的元素是兩個(gè)不同的概念,教科書中是通過描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。
②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個(gè)集合)。
③集合具有兩方面的意義,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件
2)集合的表示方法:常用的有列舉法、描述法和圖文法
3)集合的分類:有限集,無限集,空集。
4)常用數(shù)集:N,Z,Q,R,N_
2.子集、交集、并集、補(bǔ)集、空集、全集等概念。
1)子集:若對_∈A都有_∈B,則A B(或A B);
2)真子集:A B且存在_0∈B但_0 A;記為A B(或 ,且 )
3)交集:A∩B={_| _∈A且_∈B}
4)并集:A∪B={_| _∈A或_∈B}
5)補(bǔ)集:CUA={_| _ A但_∈U}
注意:①? A,若A≠?,則? A ;
②若 , ,則 ;
③若 且 ,則A=B(等集)
3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1) 與 、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。
4.有關(guān)子集的幾個(gè)等價(jià)關(guān)系
①A∩B=A A B;②A∪B=B A B;③A B C uA C uB;
④A∩CuB = 空集 CuA B;⑤CuA∪B=I A B。
5.交、并集運(yùn)算的性質(zhì)
①A∩A=A,A∩? = ?,A∩B=B∩A;②A∪A=A,A∪? =A,A∪B=B∪A;
③Cu (A∪B)= CuA∩CuB,Cu (A∩B)= CuA∪CuB;
6.有限子集的個(gè)數(shù):設(shè)集合A的元素個(gè)數(shù)是n,則A有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。
二.例題講解:
【例1】已知集合M={_|_=m+ ,m∈Z},N={_|_= ,n∈Z},P={_|_= ,p∈Z},則M,N,P滿足關(guān)系
A) M=N P B) M N=P C) M N P D) N P M
分析一:從判斷元素的共性與區(qū)別入手。
解答一:對于集合M:{_|_= ,m∈Z};對于集合N:{_|_= ,n∈Z}
對于集合P:{_|_= ,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以M N=P,故選B。
分析二:簡單列舉集合中的元素。
解答二:M={…, ,…},N={…, , , ,…},P={…, , ,…},這時(shí)不要急于判斷三個(gè)集合間的關(guān)系,應(yīng)分析各集合中不同的元素。
= ∈N, ∈N,∴M N,又 = M,∴M N,
= P,∴N P 又 ∈N,∴P N,故P=N,所以選B。
點(diǎn)評:由于思路二只是停留在最初的歸納假設(shè),沒有從理論上解決問題,因此提倡思路一,但思路二易人手。
變式:設(shè)集合 , ,則( B )
A.M=N B.M N C.N M D.
解:
當(dāng) 時(shí),2k+1是奇數(shù),k+2是整數(shù),選B
【例2】定義集合A_B={_|_∈A且_ B},若A={1,3,5,7},B={2,3,5},則A_B的子集個(gè)數(shù)為
A)1 B)2 C)3 D)4
分析:確定集合A_B子集的個(gè)數(shù),首先要確定元素的個(gè)數(shù),然后再利用公式:集合A={a1,a2,…,an}有子集2n個(gè)來求解。
解答:∵A_B={_|_∈A且_ B}, ∴A_B={1,7},有兩個(gè)元素,故A_B的子集共有22個(gè)。選D。
變式1:已知非空集合M {1,2,3,4,5},且若a∈M,則6?a∈M,那么集合M的個(gè)數(shù)為
A)5個(gè) B)6個(gè) C)7個(gè) D)8個(gè)
變式2:已知{a,b} A {a,b,c,d,e},求集合A.
解:由已知,集合中必須含有元素a,b.
集合A可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.
評析 本題集合A的個(gè)數(shù)實(shí)為集合{c,d,e}的真子集的個(gè)數(shù),所以共有 個(gè) .
【例3】已知集合A={_|_2+px+q=0},B={_|_2?4_+r=0},且A∩B={1},A∪B={?2,1,3},求實(shí)數(shù)p,q,r的值。
解答:∵A∩B={1} ∴1∈B ∴12?4×1+r=0,r=3.
∴B={_|_2?4_+r=0}={1,3}, ∵A∪B={?2,1,3},?2 B, ∴?2∈A
∵A∩B={1} ∴1∈A ∴方程_2+px+q=0的兩根為-2和1,
∴ ∴
變式:已知集合A={_|_2+b_+c=0},B={_|_2+m_+6=0},且A∩B={2},A∪B=B,求實(shí)數(shù)b,c,m的值.
解:∵A∩B={2} ∴1∈B ∴22+m?2+6=0,m=-5
∴B={_|_2-5_+6=0}={2,3} ∵A∪B=B ∴
又 ∵A∩B={2} ∴A={2} ∴b=-(2+2)=4,c=2×2=4
∴b=-4,c=4,m=-5
【例4】已知集合A={_|(_-1)(_+1)(_+2)>0},集合B滿足:A∪B={_|_>-2},且A∩B={_|1
分析:先化簡集合A,然后由A∪B和A∩B分別確定數(shù)軸上哪些元素屬于B,哪些元素不屬于B。
解答:A={_|-21}。由A∩B={_|1-2}可知[-1,1] B,而(-∞,-2)∩B=ф。
綜合以上各式有B={_|-1≤_≤5}
變式1:若A={_|_3+2_2-8_>0},B={_|_2+a_+b≤0},已知A∪B={_|_>-4},A∩B=Φ,求a,b。(答案:a=-2,b=0)
點(diǎn)評:在解有關(guān)不等式解集一類集合問題,應(yīng)注意用數(shù)形結(jié)合的方法,作出數(shù)軸來解之。
變式2:設(shè)M={_|_2-2_-3=0},N={_|a_-1=0},若M∩N=N,求所有滿足條件的a的集合。
解答:M={-1,3} , ∵M(jìn)∩N=N, ∴N M
①當(dāng) 時(shí),a_-1=0無解,∴a=0 ②
綜①②得:所求集合為{-1,0, }
【例5】已知集合 ,函數(shù)y=log2(a_2-2_+2)的定義域?yàn)镼,若P∩Q≠Φ,求實(shí)數(shù)a的取值范圍。
分析:先將原問題轉(zhuǎn)化為不等式a_2-2_+2>0在 有解,再利用參數(shù)分離求解。
解答:(1)若 , 在 內(nèi)有有解
令 當(dāng) 時(shí),
所以a>-4,所以a的取值范圍是
變式:若關(guān)于_的方程 有實(shí)根,求實(shí)數(shù)a的取值范圍。
解答:
點(diǎn)評:解決含參數(shù)問題的題目,一般要進(jìn)行分類討論,但并不是所有的問題都要討論,怎樣可以避免討論是我們思考此類問題的關(guān)鍵。
【第3篇 2023年高一數(shù)學(xué)知識點(diǎn)總結(jié)
高一數(shù)學(xué)必修一知識點(diǎn)總結(jié)
第一章 集合與函數(shù)概念
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由happy的字母組成的集合{h,a,p,y}
(3)元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:a={我校的籃球隊(duì)員},b={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:_ kb 1.c om
非負(fù)整數(shù)集(即自然數(shù)集) 記作:n
正整數(shù)集 :n_或 n+
整數(shù)集: z
有理數(shù)集: q
實(shí)數(shù)集: r
1)列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合{_?r|_-3>2} ,{_|_-3>2}
3) 語言描述法:例:{不是直角三角形的三角形}
4) venn圖:
4、集合的分類:
(1)有限集 含有有限個(gè)元素的集合
(2)無限集 含有無限個(gè)元素的集合
(3)空集 不含任何元素的集合 例:{_|_2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意: 有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。
反之: 集合a不包含于集合b,或集合b不包含集合a,記作a b或b a
2.“相等”關(guān)系:a=b (5≥5,且5≤5,則5=5)
實(shí)例:設(shè) a={_|_2-1=0} b={-1,1} “元素相同則兩集合相等”
即:① 任何一個(gè)集合是它本身的子集。a?a
② 真子集:如果a?b,且a? b那就說集合a是集合b的真子集,記作a b(或b a)
③ 如果 a?b, b?c ,那么 a?c
④ 如果a?b 同時(shí) b?a 那么a=b
3. 不含任何元素的集合叫做空集,記為φ
規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
4.子集個(gè)數(shù):
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集
三、集合的運(yùn)算
運(yùn)算類型 交 集 并 集 補(bǔ) 集
定 義 由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集.記作a b(讀作‘a(chǎn)交b’),即a b={_|_ a,且_ b}.
由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集.記作:a b(讀作‘a(chǎn)并b’),即a b ={_|_ a,或_ b}).
設(shè)s是一個(gè)集合,a是s的一個(gè)子集,由s中所有不屬于a的元素組成的集合,叫做s中子集a的補(bǔ)集(或余集)
記作 ,即
csa=
韋
恩
圖
示
性
質(zhì) a a=a
a φ=φ
a b=b a
a b a
a b b
a a=a
a φ=a
a b=b a
a b a
a b b
(cua) (cub)
= cu (a b)
(cua) (cub)
= cu(a b)
a (cua)=u
a (cua)= φ.
二、函數(shù)的有關(guān)概念
1.函數(shù)的概念
設(shè)a、b是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合a中的任意一個(gè)數(shù)_,在集合b中都有確定的數(shù)f(_)和它對應(yīng),那么就稱f:a→b為從集合a到集合b的一個(gè)函數(shù).記作: y=f(_),_∈a.其中,_叫做自變量,_的取值范圍a叫做函數(shù)的定義域;與_的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(_)| _∈a }叫做函數(shù)的值域.
注意:
1.定義域:能使函數(shù)式有意義的實(shí)數(shù)_的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)不小于零;
(3)對數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.
(5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的_的值組成的集合.
(6)指數(shù)為零底不可以等于零,
(7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.
相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));
②定義域一致 (兩點(diǎn)必須同時(shí)具備)
2.值域 : 先考慮其定義域
(1)觀察法 (2)配方法 (3)代換法
3. 函數(shù)圖象知識歸納
(1)定義:
在平面直角坐標(biāo)系中,以函數(shù) y=f(_) , (_∈a)中的_為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)p(_,y)的集合c,叫做函數(shù) y=f(_),(_ ∈a)的圖象.c上每一點(diǎn)的坐標(biāo)(_,y)均滿足函數(shù)關(guān)系y=f(_),反過來,以滿足y=f(_)的每一組有序?qū)崝?shù)對_、y為坐標(biāo)的點(diǎn)(_,y),均在c上 .
(2) 畫法
1.描點(diǎn)法: 2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對稱變換
4.區(qū)間的概念
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間 (2)無窮區(qū)間 (3)區(qū)間的數(shù)軸表示.
5.映射
一般地,設(shè)a、b是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于集合a中的任意一個(gè)元素_,在集合b中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:a b為從集合a到集合b的一個(gè)映射。記作“f(對應(yīng)關(guān)系):a(原象) b(象)”
對于映射f:a→b來說,則應(yīng)滿足:
(1)集合a中的每一個(gè)元素,在集合b中都有象,并且象是的;
(2)集合a中不同的元素,在集合b中對應(yīng)的象可以是同一個(gè);
(3)不要求集合b中的每一個(gè)元素在集合a中都有原象。
6.分段函數(shù)
(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。
(2)各部分的自變量的取值情況.
(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.
補(bǔ)充:復(fù)合函數(shù)
如果y=f(u)(u∈m),u=g(_)(_∈a),則 y=f[g(_)]=f(_)(_∈a) 稱為f、g的復(fù)合函數(shù)。
二.函數(shù)的性質(zhì)
1.函數(shù)的單調(diào)性(局部性質(zhì))
(1)增函數(shù)
設(shè)函數(shù)y=f(_)的定義域?yàn)閕,如果對于定義域i內(nèi)的某個(gè)區(qū)間d內(nèi)的任意兩個(gè)自變量_1,_2,當(dāng)_1
如果對于區(qū)間d上的任意兩個(gè)自變量的值_1,_2,當(dāng)_1
注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);
(2) 圖象的特點(diǎn)
如果函數(shù)y=f(_)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(_)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.
(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法
(a) 定義法:
(1)任取_1,_2∈d,且_1
(2)作差f(_1)-f(_2);或者做商
(3)變形(通常是因式分解和配方);
(4)定號(即判斷差f(_1)-f(_2)的正負(fù));
(5)下結(jié)論(指出函數(shù)f(_)在給定的區(qū)間d上的單調(diào)性).
(b)圖象法(從圖象上看升降)
(c)復(fù)合函數(shù)的單調(diào)性
復(fù)合函數(shù)f[g(_)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(_),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”
注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.
8.函數(shù)的奇偶性(整體性質(zhì))
(1)偶函數(shù):一般地,對于函數(shù)f(_)的定義域內(nèi)的任意一個(gè)_,都有f(-_)=f(_),那么f(_)就叫做偶函數(shù).
(2)奇函數(shù):一般地,對于函數(shù)f(_)的定義域內(nèi)的任意一個(gè)_,都有f(-_)=—f(_),那么f(_)就叫做奇函數(shù).
(3)具有奇偶性的函數(shù)的圖象的特征:偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.
9.利用定義判斷函數(shù)奇偶性的步驟:
○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對稱;
○2確定f(-_)與f(_)的關(guān)系;
○3作出相應(yīng)結(jié)論:若f(-_) = f(_) 或 f(-_)-f(_) = 0,則f(_)是偶函數(shù);若f(-_) =-f(_) 或 f(-_)+f(_) = 0,則f(_)是奇函數(shù).
注意:函數(shù)定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定; (2)由 f(-_)±f(_)=0或f(_)/f(-_)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定 .
10、函數(shù)的解析表達(dá)式
(1)函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.
(2)求函數(shù)的解析式的主要方法有:1.湊配法2.待定系數(shù)法3.換元法4.消參法
11.函數(shù)(?。┲?/p>
○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(?。┲?/p>
○2 利用圖象求函數(shù)的(?。┲?/p>
○3 利用函數(shù)單調(diào)性的判斷函數(shù)的(?。┲担?/p>
如果函數(shù)y=f(_)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(_)在_=b處有值f(b);
如果函數(shù)y=f(_)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(_)在_=b處有最小值f(b);
第三章 基本初等函數(shù)
一、指數(shù)函數(shù)
(一)指數(shù)與指數(shù)冪的運(yùn)算
1.根式的概念:一般地,如果 ,那么 叫做 的 次方根,其中 >1,且 ∈ _.
負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作 。
當(dāng) 是奇數(shù)時(shí), ,當(dāng) 是偶數(shù)時(shí),
2.分?jǐn)?shù)指數(shù)冪
正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:
,
0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義
3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)
(1) · ;
(2) ;
(3) .
(二)指數(shù)函數(shù)及其性質(zhì)
1、指數(shù)函數(shù)的概念:一般地,函數(shù) 叫做指數(shù)函數(shù),其中_是自變量,函數(shù)的定義域?yàn)閞.
注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.
2、指數(shù)函數(shù)的圖象和性質(zhì)
a>1 0<1
定義域 r 定義域 r
值域y>0 值域y>0
在r上單調(diào)遞增 在r上單調(diào)遞減
非奇非偶函數(shù) 非奇非偶函數(shù)
函數(shù)圖象都過定點(diǎn)(0,1) 函數(shù)圖象都過定點(diǎn)(0,1)
注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數(shù)當(dāng)且僅當(dāng) ;
(3)對于指數(shù)函數(shù) ,總有 ;
二、對數(shù)函數(shù)
(一)對數(shù)
1.對數(shù)的概念:
一般地,如果 ,那么數(shù) 叫做以 為底 的對數(shù),記作: ( — 底數(shù), — 真數(shù), — 對數(shù)式)
說明:○1 注意底數(shù)的限制 ,且 ;
○2 ;
○3 注意對數(shù)的書寫格式.
兩個(gè)重要對數(shù):
○1 常用對數(shù):以10為底的對數(shù) ;
○2 自然對數(shù):以無理數(shù) 為底的對數(shù)的對數(shù) .
指數(shù)式與對數(shù)式的互化
冪值 真數(shù)
= n = b
底數(shù)
指數(shù) 對數(shù)
(二)對數(shù)的運(yùn)算性質(zhì)
如果 ,且 , , ,那么:
○1 · + ;
○2 - ;
○3 .
注意:換底公式: ( ,且 ; ,且 ; ).
利用換底公式推導(dǎo)下面的結(jié)論:(1) ;(2) .
(3)、重要的公式 ①、負(fù)數(shù)與零沒有對數(shù); ②、 , ③、對數(shù)恒等式
(二)對數(shù)函數(shù)
1、對數(shù)函數(shù)的概念:函數(shù) ,且 叫做對數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是(0,+∞).
注意:○1 對數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如: , 都不是對數(shù)函數(shù),而只能稱其為對數(shù)型函數(shù).
○2 對數(shù)函數(shù)對底數(shù)的限制: ,且 .
2、對數(shù)函數(shù)的性質(zhì):
a>1 0<1
定義域_>0 定義域_>0
值域?yàn)閞 值域?yàn)閞
在r上遞增 在r上遞減
函數(shù)圖象都過定點(diǎn)(1,0) 函數(shù)圖象都過定點(diǎn)(1,0)
(三)冪函數(shù)
1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù).
2、冪函數(shù)性質(zhì)歸納.
(1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(diǎn)(1,1);
(2) 時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間 上是增函數(shù).特別地,當(dāng) 時(shí),冪函數(shù)的圖象下凸;當(dāng) 時(shí),冪函數(shù)的圖象上凸;
(3) 時(shí),冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當(dāng) 從右邊趨向原點(diǎn)時(shí),圖象在 軸右方無限地逼近 軸正半軸,當(dāng) 趨于 時(shí),圖象在 軸上方無限地逼近 軸正半軸.
第四章 函數(shù)的應(yīng)用
一、方程的根與函數(shù)的零點(diǎn)
1、函數(shù)零點(diǎn)的概念:對于函數(shù) ,把使 成立的實(shí)數(shù) 叫做函數(shù) 的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù) 的零點(diǎn)就是方程 實(shí)數(shù)根,亦即函數(shù) 的圖象與 軸交點(diǎn)的橫坐標(biāo)。
即:方程 有實(shí)數(shù)根 函數(shù) 的圖象與 軸有交點(diǎn) 函數(shù) 有零點(diǎn).
3、函數(shù)零點(diǎn)的求法:
○1 (代數(shù)法)求方程 的實(shí)數(shù)根;
○2 (幾何法)對于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).
4、二次函數(shù)的零點(diǎn):
二次函數(shù) .
(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).
(2)△=0,方程 有兩相等實(shí)根,二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).
(3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn).
5.函數(shù)的模型
【第4篇 高一數(shù)學(xué)知識點(diǎn)總結(jié)(定理)
導(dǎo)語人生要敢于理解挑戰(zhàn),經(jīng)受得起挑戰(zhàn)的人才能夠領(lǐng)悟人生非凡的真諦,才能夠?qū)崿F(xiàn)自我無限的超越,才能夠創(chuàng)造魅力永恒的價(jià)值。以下是高一頻道為你整理的《高一數(shù)學(xué)知識點(diǎn)總結(jié)(定理)》,希望你不負(fù)時(shí)光,努力向前,加油!
1過兩點(diǎn)有且只有一條直線
2兩點(diǎn)之間線段最短
3同角或等角的補(bǔ)角相等
4同角或等角的余角相等
5過一點(diǎn)有且只有一條直線和已知直線垂直
6直線外一點(diǎn)與直線上各點(diǎn)連接的所有線段中,垂線段最短
7平行公理經(jīng)過直線外一點(diǎn),有且只有一條直線與這條直線平行
8如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9同位角相等,兩直線平行
10內(nèi)錯(cuò)角相等,兩直線平行
11同旁內(nèi)角互補(bǔ),兩直線平行
12兩直線平行,同位角相等
13兩直線平行,內(nèi)錯(cuò)角相等
14兩直線平行,同旁內(nèi)角互補(bǔ)
15定理三角形兩邊的和大于第三邊
16推論三角形兩邊的差小于第三邊
17三角形內(nèi)角和定理三角形三個(gè)內(nèi)角的和等于180°
18推論1直角三角形的兩個(gè)銳角互余
19推論2三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和
20推論3三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角
21全等三角形的對應(yīng)邊、對應(yīng)角相等
22邊角邊公理(sas)有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等
23角邊角公理(asa)有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等
24推論(aas)有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等
25邊邊邊公理(sss)有三邊對應(yīng)相等的兩個(gè)三角形全等
26斜邊、直角邊公理(hl)有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等
27定理1在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
28定理2到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上
29角的平分線是到角的兩邊距離相等的所有點(diǎn)的集合
30等腰三角形的性質(zhì)定理等腰三角形的兩個(gè)底角相等(即等邊對等角)
31推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊
32等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合
33推論3等邊三角形的各角都相等,并且每一個(gè)角都等于60°
34等腰三角形的判定定理如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等(等角對等邊)
35推論1三個(gè)角都相等的三角形是等邊三角形
36推論2有一個(gè)角等于60°的等腰三角形是等邊三角形
37在直角三角形中,如果一個(gè)銳角等于30°那么它所對的直角邊等于斜邊的一半
38直角三角形斜邊上的中線等于斜邊上的一半
39定理線段垂直平分線上的點(diǎn)和這條線段兩個(gè)端點(diǎn)的距離相等
40逆定理和一條線段兩個(gè)端點(diǎn)距離相等的點(diǎn),在這條線段的垂直平分線上
41線段的垂直平分線可看作和線段兩端點(diǎn)距離相等的所有點(diǎn)的集合
42定理1關(guān)于某條直線對稱的兩個(gè)圖形是全等形
43定理2如果兩個(gè)圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點(diǎn)連線的垂直平分線44定理3兩個(gè)圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點(diǎn)在對稱軸上
45逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線被同一條直線垂直平分,那么這兩個(gè)圖形關(guān)于這條直線對稱
46勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2
47勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個(gè)三角形是直角三角形
48定理四邊形的內(nèi)角和等于360°
49四邊形的外角和等于360°
50多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°
51推論任意多邊的外角和等于360°
52平行四邊形性質(zhì)定理1平行四邊形的對角相等
53平行四邊形性質(zhì)定理2平行四邊形的對邊相等
54推論夾在兩條平行線間的平行線段相等
55平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分
56平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形
57平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形
58平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形
59平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形
60矩形性質(zhì)定理1矩形的四個(gè)角都是直角
61矩形性質(zhì)定理2矩形的對角線相等
62矩形判定定理1有三個(gè)角是直角的四邊形是矩形
63矩形判定定理2對角線相等的平行四邊形是矩形
64菱形性質(zhì)定理1菱形的四條邊都相等
65菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角
66菱形面積=對角線乘積的一半,即s=(a×b)÷2
67菱形判定定理1四邊都相等的四邊形是菱形
68菱形判定定理2對角線互相垂直的平行四邊形是菱形
69正方形性質(zhì)定理1正方形的四個(gè)角都是直角,四條邊都相等
70正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角
71定理1關(guān)于中心對稱的兩個(gè)圖形是全等的
72定理2關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)連線都經(jīng)過對稱中心,并且被對稱中心平分
73逆定理如果兩個(gè)圖形的對應(yīng)點(diǎn)連線都經(jīng)過某一點(diǎn),并且被這一點(diǎn)平分,那么這兩個(gè)圖形關(guān)于這一點(diǎn)對稱
74等腰梯形性質(zhì)定理等腰梯形在同一底上的兩個(gè)角相等
75等腰梯形的兩條對角線相等
76等腰梯形判定定理在同一底上的兩個(gè)角相等的梯形是等腰梯形
77對角線相等的梯形是等腰梯形
78平行線等分線段定理如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等
79推論1經(jīng)過梯形一腰的中點(diǎn)與底平行的直線,必平分另一腰
80推論2經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線,必平分第三邊
81三角形中位線定理三角形的中位線平行于第三邊,并且等于它的一半
82梯形中位線定理梯形的中位線平行于兩底,并且等于兩底和的一半l=(a+b)÷2s=l×h
83(1)比例的基本性質(zhì)如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
84(2)合比性質(zhì)如果a/b=c/d,那么(a±b)/b=(c±d)/d
85(3)等比性質(zhì)如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b
86平行線分線段成比例定理三條平行線截兩條直線,所得的對應(yīng)線段成比例
87推論平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應(yīng)線段成比例
88定理如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應(yīng)線段成比例,那么這條直線平行于三角形的第三邊
89平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例
90定理平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
91相似三角形判定定理1兩角對應(yīng)相等,兩三角形相似(asa)
92直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似
93判定定理2兩邊對應(yīng)成比例且夾角相等,兩三角形相似(sas)
94判定定理3三邊對應(yīng)成比例,兩三角形相似(sss)
95定理如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似
96性質(zhì)定理1相似三角形對應(yīng)高的比,對應(yīng)中線的比與對應(yīng)角平分線的比都等于相似比
97性質(zhì)定理2相似三角形周長的比等于相似比
98性質(zhì)定理3相似三角形面積的比等于相似比的平方
99任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等
于它的余角的正弦值
100任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值
101圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
102圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
103圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
104同圓或等圓的半徑相等
105到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
106和已知線段兩個(gè)端點(diǎn)的距離相等的點(diǎn)的軌跡,是著條線段的垂直平分線
107到已知角的兩邊距離相等的點(diǎn)的軌跡,是這個(gè)角的平分線
108到兩條平行線距離相等的點(diǎn)的軌跡,是和這兩條平行線平行且距離相等的一條直線
109定理不在同一直線上的三點(diǎn)確定一個(gè)圓。
110垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
111推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
112推論2圓的兩條平行弦所夾的弧相等
113圓是以圓心為對稱中心的中心對稱圖形
114定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
115推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等
116定理一條弧所對的圓周角等于它所對的圓心角的一半
117推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
118推論2半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑
119推論3如果三角形一邊上的中線等于這邊的一半,那么這個(gè)三角形是直角三角形
120定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角
121①直線l和⊙o相交d
②直線l和⊙o相切d=r
③直線l和⊙o相離d>r
122切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
123切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑
124推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
125推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
126切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
127圓的外切四邊形的兩組對邊的和相等
128弦切角定理弦切角等于它所夾的弧對的圓周角
129推論如果兩個(gè)弦切角所夾的弧相等,那么這兩個(gè)弦切角也相等
130相交弦定理圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長的積相等
131推論如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的
兩條線段的比例中項(xiàng)
132切割線定理從圓外一點(diǎn)引圓的切線和割線,切線長是這點(diǎn)到割
線與圓交點(diǎn)的兩條線段長的比例中項(xiàng)
133推論從圓外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長的積相等
134如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
135①兩圓外離d>r+r②兩圓外切d=r+r
③兩圓相交r-rr)
④兩圓內(nèi)切d=r-r(r>r)⑤兩圓內(nèi)含dr)
136定理相交兩圓的連心線垂直平分兩圓的公共弦
137定理把圓分成n(n≥3):
⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
138定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
139正n邊形的每個(gè)內(nèi)角都等于(n-2)×180°/n
140定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
141正n邊形的面積sn=pnrn/2p表示正n邊形的周長
142正三角形面積√3a/4a表示邊長
143如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為
360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
144弧長計(jì)算公式:l=nπr/180
145扇形面積公式:s扇形=nπr2/360=lr/2
146內(nèi)公切線長=d-(r-r)外公切線長=d-(r+r)
147等腰三角形的兩個(gè)底腳相等
148等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合
149如果一個(gè)三角形的兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等
150三條邊都相等的三角形叫做等邊三角形
【第5篇 兩個(gè)平面的位置關(guān)系高一數(shù)學(xué)知識點(diǎn)總結(jié)
兩個(gè)平面的位置關(guān)系高一數(shù)學(xué)知識點(diǎn)總結(jié)
兩個(gè)平面的位置關(guān)系:
(1)兩個(gè)平面互相平行的定義:空間兩平面沒有公共點(diǎn)
(2)兩個(gè)平面的位置關(guān)系:
兩個(gè)平面平行-----沒有公共點(diǎn);兩個(gè)平面相交-----有一條公共直線。
a、平行
兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。
兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線平行。
b、相交
二面角(1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。
(2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的'圖形叫做二面角。二面角的取值范圍為[0,180]
(3)二面角的棱:這一條直線叫做二面角的棱。
(4)二面角的面:這兩個(gè)半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp.兩平面垂直兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個(gè)平面互相垂直。記為
兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直
兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面。
attention:
二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)
【第6篇 高一數(shù)學(xué)知識點(diǎn)總結(jié):函數(shù)的有關(guān)概念
函數(shù)的有關(guān)概念
1.函數(shù)的概念:設(shè)a、b是非空的數(shù)集,如果按照某個(gè)確定的對應(yīng)關(guān)系f,使對于集合a中的任意一個(gè)數(shù)_,在集合b中都有確定的數(shù)f(_)和它對應(yīng),那么就稱f:a→b為從集合a到集合b的一個(gè)函數(shù).記作: y=f(_),_∈a.其中,_叫做自變量,_的取值范圍a叫做函數(shù)的定義域;與_的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(_)| _∈a }叫做函數(shù)的值域.
注意:
1.定義域:能使函數(shù)式有意義的實(shí)數(shù)_的集合稱為函數(shù)的定義域。
求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:
(1)分式的分母不等于零;
(2)偶次方根的被開方數(shù)不小于零;
(3)對數(shù)式的真數(shù)必須大于零;
(4)指數(shù)、對數(shù)式的底必須大于零且不等于1.
(5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的_的值組成的集合.
(6)指數(shù)為零底不可以等于零,
(7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.
?相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)
(見課本21頁相關(guān)例2)
2.值域 : 先考慮其定義域
(1)觀察法
(2)配方法
(3)代換法
3. 函數(shù)圖象知識歸納
(1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(_) , (_∈a)中的_為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)p(_,y)的集合c,叫做函數(shù) y=f(_),(_ ∈a)的圖象.c上每一點(diǎn)的坐標(biāo)(_,y)均滿足函數(shù)關(guān)系y=f(_),反過來,以滿足y=f(_)的每一組有序?qū)崝?shù)對_、y為坐標(biāo)的點(diǎn)(_,y),均在c上 .
(2) 畫法
a、描點(diǎn)法:
b、圖象變換法
常用變換方法有三種
1)平移變換
2)伸縮變換
3)對稱變換
4.區(qū)間的概念
(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間
(2)無窮區(qū)間
(3)區(qū)間的數(shù)軸表示.
5.映射
一般地,設(shè)a、b是兩個(gè)非空的集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于集合a中的任意一個(gè)元素_,在集合b中都有確定的元素y與之對應(yīng),那么就稱對應(yīng)f:a b為從集合a到集合b的一個(gè)映射。記作“f(對應(yīng)關(guān)系):a(原象) b(象)”
對于映射f:a→b來說,則應(yīng)滿足:
(1)集合a中的每一個(gè)元素,在集合b中都有象,并且象是的;
(2)集合a中不同的元素,在集合b中對應(yīng)的象可以是同一個(gè);
(3)不要求集合b中的每一個(gè)元素在集合a中都有原象。
6.分段函數(shù)
(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。
(2)各部分的自變量的取值情況.
(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.
補(bǔ)充:復(fù)合函數(shù)
如果y=f(u)(u∈m),u=g(_)(_∈a),則 y=f[g(_)]=f(_)(_∈a) 稱為f、g的復(fù)合函數(shù)。
二.函數(shù)的性質(zhì)
1.函數(shù)的單調(diào)性(局部性質(zhì))
(1)增函數(shù)
設(shè)函數(shù)y=f(_)的定義域?yàn)閕,如果對于定義域i內(nèi)的某個(gè)區(qū)間d內(nèi)的任意兩個(gè)自變量_1,_2,當(dāng)_1
如果對于區(qū)間d上的任意兩個(gè)自變量的值_1,_2,當(dāng)_1
注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);
(2) 圖象的特點(diǎn)
如果函數(shù)y=f(_)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(_)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.
(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法
(a) 定義法:
1 任取_1,_2∈d,且_1
2 作差f(_1)-f(_2);
3 變形(通常是因式分解和配方);
4 定號(即判斷差f(_1)-f(_2)的正負(fù));
5 下結(jié)論(指出函數(shù)f(_)在給定的區(qū)間d上的單調(diào)性).
(b)圖象法(從圖象上看升降)
(c)復(fù)合函數(shù)的單調(diào)性
復(fù)合函數(shù)f[g(_)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(_),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”
注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.
8.函數(shù)的奇偶性(整體性質(zhì))
(1)偶函數(shù)
一般地,對于函數(shù)f(_)的定義域內(nèi)的任意一個(gè)_,都有f(-_)=f(_),那么f(_)就叫做偶函數(shù).
(2).奇函數(shù)
一般地,對于函數(shù)f(_)的定義域內(nèi)的任意一個(gè)_,都有f(-_)=—f(_),那么f(_)就叫做奇函數(shù).
(3)具有奇偶性的函數(shù)的圖象的特征
偶函數(shù)的圖象關(guān)于y軸對稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對稱.
利用定義判斷函數(shù)奇偶性的步驟:
○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對稱;
○2確定f(-_)與f(_)的關(guān)系;
○3作出相應(yīng)結(jié)論:若f(-_) = f(_) 或 f(-_)-f(_) = 0,則f(_)是偶函數(shù);若f(-_) =-f(_) 或 f(-_)+f(_) = 0,則f(_)是奇函數(shù).
注意:函數(shù)定義域關(guān)于原點(diǎn)對稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對稱,若不對稱則函數(shù)是非奇非偶函數(shù).若對稱,(1)再根據(jù)定義判定; (2)由 f(-_)±f(_)=0或f(_)/f(-_)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定 .
9、函數(shù)的解析表達(dá)式
(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對應(yīng)法則,二是要求出函數(shù)的定義域.
(2)求函數(shù)的解析式的主要方法有:
1)湊配法
2)待定系數(shù)法
3)換元法
4)消參法
10.函數(shù)(?。┲担ǘx見課本p36頁)
1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(?。┲?/p>
2 利用圖象求函數(shù)的(小)值
3 利用函數(shù)單調(diào)性的判斷函數(shù)的(?。┲担?/p>
如果函數(shù)y=f(_)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(_)在_=b處有值f(b);
如果函數(shù)y=f(_)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(_)在_=b處有最小值f(b);
【第7篇 高一數(shù)學(xué)知識點(diǎn)歸納總結(jié)
導(dǎo)語高一新生要作好充分思想準(zhǔn)備,以自信、寬容的心態(tài),盡快融入集體,適應(yīng)新同學(xué)、適應(yīng)新校園環(huán)境、適應(yīng)與初中迥異的紀(jì)律制度。記?。菏悄阒鲃拥剡m應(yīng)環(huán)境,而不是環(huán)境適應(yīng)你。因?yàn)槟阕呦蛏鐣⒓庸ぷ饕驳眠m應(yīng)社會。以下內(nèi)容是為你整理的《高一數(shù)學(xué)知識點(diǎn)歸納總結(jié)》,希望你不負(fù)時(shí)光,努力向前,加油!
1.高一數(shù)學(xué)知識點(diǎn)歸納總結(jié)
定義:
從平面解析幾何的角度來看,平面上的直線就是由平面直角坐標(biāo)系中的一個(gè)二元一次方程所表示的圖形。求兩條直線的交點(diǎn),只需把這兩個(gè)二元一次方程聯(lián)立求解,當(dāng)這個(gè)聯(lián)立方程組無解時(shí),兩直線平行;有無窮多解時(shí),兩直線重合;只有一解時(shí),兩直線相交于一點(diǎn)。常用直線向上方向與_軸正向的夾角(叫直線的傾斜角)或該角的正切(稱直線的斜率)來表示平面上直線(對于_軸)的傾斜程度??梢酝ㄟ^斜率來判斷兩條直線是否互相平行或互相垂直,也可計(jì)算它們的交角。直線與某個(gè)坐標(biāo)軸的交點(diǎn)在該坐標(biāo)軸上的坐標(biāo),稱為直線在該坐標(biāo)軸上的截距。直線在平面上的位置,由它的斜率和一個(gè)截距完全確定。在空間,兩個(gè)平面相交時(shí),交線為一條直線。因此,在空間直角坐標(biāo)系中,用兩個(gè)表示平面的三元一次方程聯(lián)立,作為它們相交所得直線的方程。
表達(dá)式:
斜截式:y=k_+b
兩點(diǎn)式:(y-y1)/(y1-y2)=(_-_1)/(_1-_2)
點(diǎn)斜式:y-y1=k(_-_1)
截距式:(_/a)+(y/b)=0
補(bǔ)充一下:最基本的標(biāo)準(zhǔn)方程不要忘了,a_+by+c=0,
因?yàn)?上面的四種直線方程不包含斜率k不存在的情況,如_=3,這條直線就不能用上面的四種形式表示,解題過程中尤其要注意,k不存在的情況。
2.高一數(shù)學(xué)知識點(diǎn)歸納總結(jié)
(1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
(2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。
(3)函數(shù)圖形都是下凹的。
(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
(5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于y軸與_軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于y軸的正半軸與_軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過渡位置。
(6)函數(shù)總是在某一個(gè)方向上無限趨向于_軸,永不相交。
(7)函數(shù)總是通過(0,1)這點(diǎn)。
(8)顯然指數(shù)函數(shù)__。
3.高一數(shù)學(xué)知識點(diǎn)歸納總結(jié)
定義:
形如y=_^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
定義域和值域:
當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則_肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則_不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)_為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在_大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在_小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域
性質(zhì):
對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則_^(p/q)=q次根號(_的p次方),如果q是奇數(shù),函數(shù)的定義域是r,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則_=1/(_^k),顯然_≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到_所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對于_>0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對于_<0和_>0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對于_為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
4.高一數(shù)學(xué)知識點(diǎn)歸納總結(jié)
1.函數(shù)的奇偶性
(1)若f(_)是偶函數(shù),那么f(_)=f(-_);
(2)若f(_)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(_)±f(-_)=0或(f(_)≠0);
(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性;
2.復(fù)合函數(shù)的有關(guān)問題
(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(_)]的定義域由不等式a≤g(_)≤b解出即可;若已知f[g(_)]的定義域?yàn)閇a,b],求f(_)的定義域,相當(dāng)于_∈[a,b]時(shí),求g(_)的值域(即f(_)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在圖像上;
(2)證明圖像c1與c2的對稱性,即證明c1上任意點(diǎn)關(guān)于對稱中心(對稱軸)的對稱點(diǎn)仍在c2上,反之亦然;
(3)曲線c1:f(_,y)=0,關(guān)于y=_+a(y=-_+a)的對稱曲線c2的方程為f(y-a,_+a)=0(或f(-y+a,-_+a)=0);
(4)曲線c1:f(_,y)=0關(guān)于點(diǎn)(a,b)的對稱曲線c2方程為:f(2a-_,2b-y)=0;
(5)若函數(shù)y=f(_)對_∈r時(shí),f(a+_)=f(a-_)恒成立,則y=f(_)圖像關(guān)于直線_=a對稱;
(6)函數(shù)y=f(_-a)與y=f(b-_)的圖像關(guān)于直線_=對稱;
4.函數(shù)的周期性
(1)y=f(_)對_∈r時(shí),f(_+a)=f(_-a)或f(_-2a)=f(_)(a>0)恒成立,則y=f(_)是周期為2a的周期函數(shù);
(2)若y=f(_)是偶函數(shù),其圖像又關(guān)于直線_=a對稱,則f(_)是周期為2|a|的周期函數(shù);
(3)若y=f(_)奇函數(shù),其圖像又關(guān)于直線_=a對稱,則f(_)是周期為4|a|的周期函數(shù);
(4)若y=f(_)關(guān)于點(diǎn)(a,0),(b,0)對稱,則f(_)是周期為2的周期函數(shù);
(5)y=f(_)的圖象關(guān)于直線_=a,_=b(a≠b)對稱,則函數(shù)y=f(_)是周期為2的周期函數(shù);
(6)y=f(_)對_∈r時(shí),f(_+a)=-f(_)(或f(_+a)=,則y=f(_)是周期為2的周期函數(shù);
5.方程k=f(_)有解k∈d(d為f(_)的值域);
a≥f(_)恒成立a≥[f(_)]ma_,;a≤f(_)恒成立a≤[f(_)]min;
(1)(a>0,a≠1,b>0,n∈r+);
(2)logan=(a>0,a≠1,b>0,b≠1);
(3)logab的符號由口訣“同正異負(fù)”記憶;
(4)alogan=n(a>0,a≠1,n>0);
6.判斷對應(yīng)是否為映射時(shí),抓住兩點(diǎn):
(1)a中元素必須都有象且;
(2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象;
7.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。
8.對于反函數(shù),應(yīng)掌握以下一些結(jié)論:
(1)定義域上的單調(diào)函數(shù)必有反函數(shù);
(2)奇函數(shù)的反函數(shù)也是奇函數(shù);
(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù);
(4)周期函數(shù)不存在反函數(shù);
(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性;
(6)y=f(_)與y=f-1(_)互為反函數(shù),設(shè)f(_)的定義域?yàn)閍,值域?yàn)閎,則有f[f--1(_)]=_(_∈b),f--1[f(_)]=_(_∈a);
9.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合
二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關(guān)系;
10.依據(jù)單調(diào)性
利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題;
5.高一數(shù)學(xué)知識點(diǎn)歸納總結(jié)
(1)直線的傾斜角
定義:_軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與_軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。
②過兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):
(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與p1、p2的順序無關(guān);
(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
【第8篇 蘇教版高一數(shù)學(xué)知識點(diǎn)總結(jié)
學(xué)習(xí)目標(biāo)
1.了解曲線的方程的概念;
2.通過具體實(shí)例研究,掌握求曲線方程的一般步驟;
3.能根據(jù)曲線方程的概念解決一些簡單問題.
一、預(yù)習(xí)檢查
1.觀察下表中的方程與曲線,說明它們有怎樣的關(guān)系:
序號方程曲線
1
2.條件甲:曲線是方程的曲線.條件乙:曲線上點(diǎn)的坐標(biāo)都是方程的解.甲是乙的什么條件?
3.長為的線段的兩端點(diǎn)分別在互相垂直的兩條直線上滑動,求線段的中點(diǎn)的軌跡.
4.求平面內(nèi)到兩定點(diǎn)的距離之比等于2的動點(diǎn)的軌跡方程.
二、問題探究
探究1.我們已經(jīng)建立了直線的方程,圓的方程及圓錐曲線的方程.那么,對于一般的曲線,曲線的方程的含義是什么?
探究2.回憶建立橢圓,雙曲線,拋物線方程的過程,寫出求曲線方程的一般步驟;
例1.(1)動點(diǎn)滿足關(guān)系式:,試解釋關(guān)系式的幾何意義并求動點(diǎn)的軌跡方程.
(2)試畫出所表示的曲線.
例2.已知△一邊的兩個(gè)端點(diǎn)是和,另兩邊所在直線的斜率之積是,求頂點(diǎn)的軌跡方程.
例3.(理科)設(shè)直線與雙曲線交于兩點(diǎn),且以為直徑的圓過原點(diǎn),求點(diǎn)的軌跡方程.
三、思維訓(xùn)練
1.一個(gè)動點(diǎn)p在圓上移動時(shí),它與定點(diǎn)m連線中點(diǎn)的軌跡方程是.
2.在直角坐標(biāo)系中,,則點(diǎn)的軌跡方程是.
3.點(diǎn)是以為焦點(diǎn)的橢圓上一點(diǎn),過焦點(diǎn)作∠的外角平分線的垂線,垂足為,點(diǎn)的軌跡是.
4.一動圓與定圓相切,且該動圓過定點(diǎn).
(1)求動圓圓心的軌跡的方程;
(2)過點(diǎn)的直線與軌跡交于不同的兩點(diǎn),
求的取值范圍.
四、課后鞏固
1.已知點(diǎn)在以原點(diǎn)為圓心的單位圓上運(yùn)動,則點(diǎn)的軌跡是.
2.坐標(biāo)平面上有兩個(gè)定點(diǎn)和動點(diǎn),如果直線的斜率之積為定值,則點(diǎn)的軌跡可能是:①橢圓;②雙曲線;③拋物線;④圓;⑤直線.
試將正確的序號填在直線上.
3.設(shè)定點(diǎn)是拋物線上的任意一點(diǎn),定點(diǎn),,則點(diǎn)的軌跡方程是.
4.求焦點(diǎn)在軸上,焦距是4,且經(jīng)過點(diǎn)的橢圓的標(biāo)準(zhǔn)方程.
5.(理科)已知直角坐標(biāo)平面上點(diǎn)和圓:,動點(diǎn)到圓的切線長與的比等于常數(shù),求動點(diǎn)的軌跡.
【第9篇 人教版高一數(shù)學(xué)知識點(diǎn)總結(jié)
導(dǎo)語我們最孤獨(dú)的,不是缺少知己,而是在心途中迷失了自己,忘了來時(shí)的方向與去時(shí)的路;我們最痛苦的,不是失去了曾經(jīng)的珍愛,而是靈魂中少了一方寧靜的空間,慢慢在浮躁中遺棄了那些寶貴的精神;我們最需要的,不是別人的憐憫或關(guān)懷,而是一種頑強(qiáng)不屈的自助。你若不愛自己,沒誰可以幫你。高一頻道為你正在奮斗的你整理了《人教版高一數(shù)學(xué)知識點(diǎn)總結(jié)》希望可以幫到你!
指數(shù)函數(shù)
(1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。
(2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。
(3)函數(shù)圖形都是下凹的。
(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。
(5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無窮大的過程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于y軸與_軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于y軸的正半軸與_軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過渡位置。
(6)函數(shù)總是在某一個(gè)方向上無限趨向于_軸,永不相交。
(7)函數(shù)總是通過(0,1)這點(diǎn)。
(8)顯然指數(shù)函數(shù)_。
奇偶性
定義
一般地,對于函數(shù)f(_)
(1)如果對于函數(shù)定義域內(nèi)的任意一個(gè)_,都有f(-_)=-f(_),那么函數(shù)f(_)就叫做奇函數(shù)。
(2)如果對于函數(shù)定義域內(nèi)的任意一個(gè)_,都有f(-_)=f(_),那么函數(shù)f(_)就叫做偶函數(shù)。
(3)如果對于函數(shù)定義域內(nèi)的任意一個(gè)_,f(-_)=-f(_)與f(-_)=f(_)同時(shí)成立,那么函數(shù)f(_)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。
(4)如果對于函數(shù)定義域內(nèi)的任意一個(gè)_,f(-_)=-f(_)與f(-_)=f(_)都不能成立,那么函數(shù)f(_)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。
立體幾何初步
1、柱、錐、臺、球的結(jié)構(gòu)特征
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱。
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺:
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點(diǎn)字母,如五棱臺
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。
幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。
(6)圓臺:
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點(diǎn):
①原來與_軸平行的線段仍然與_平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
直線與方程
(1)直線的傾斜角
定義:_軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與_軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°
(2)直線的斜率
①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當(dāng)時(shí),。當(dāng)時(shí),;當(dāng)時(shí),不存在。
②過兩點(diǎn)的直線的斜率公式:
注意下面四點(diǎn):
(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;
(2)k與p1、p2的順序無關(guān);
(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;
(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。
冪函數(shù)
定義:
形如y=_^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
定義域和值域:
當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則_肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則_不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)_為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在_大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在_小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域
性質(zhì):
對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則_^(p/q)=q次根號(_的p次方),如果q是奇數(shù),函數(shù)的定義域是r,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則_=1/(_^k),顯然_≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到_所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對于_>0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對于_<0和_>0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對于_為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
【第10篇 立體幾何高一數(shù)學(xué)知識點(diǎn)總結(jié)
立體幾何高一數(shù)學(xué)知識點(diǎn)總結(jié)
1、柱、錐、臺、球的結(jié)構(gòu)特征
(1)棱柱:
定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。
表示:用各頂點(diǎn)字母,如五棱柱或用對角線的端點(diǎn)字母,如五棱柱。
幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。
(2)棱錐
定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的.幾何體。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等
表示:用各頂點(diǎn)字母,如五棱錐
幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。
(3)棱臺:
定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分。
分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺、五棱臺等
表示:用各頂點(diǎn)字母,如五棱臺
幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點(diǎn)
(4)圓柱:
定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體。
幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。
(5)圓錐:
定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體。
幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。
(6)圓臺:
定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分
幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。
(7)球體:
定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體
幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。
2、空間幾何體的三視圖
定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)
注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;
俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;
側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。
3、空間幾何體的直觀圖——斜二測畫法
斜二測畫法特點(diǎn):
①原來與_軸平行的線段仍然與_平行且長度不變;
②原來與y軸平行的線段仍然與y平行,長度為原來的一半。
【第11篇 高一數(shù)學(xué)知識點(diǎn)總結(jié)
高一數(shù)學(xué)知識點(diǎn)總結(jié)
一、集合有關(guān)概念
1.集合的含義
2.集合的中元素的三個(gè)特性:
(1)元素的確定性如:世界上最高的山
(2)元素的互異性如:由happy的字母組成的集合{h,a,p,y}
(3)元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個(gè)集合
3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:a={我校的籃球隊(duì)員},b={1,2,3,4,5}
(2) 集合的表示方法:列舉法與描述法。
注意:常用數(shù)集及其記法:
非負(fù)整數(shù)集(即自然數(shù)集) 記作:n
正整數(shù)集 n_或 n+ 整數(shù)集z 有理數(shù)集q 實(shí)數(shù)集r
1)列舉法:{a,b,c……}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的'方法。{_r| _-3>;2} ,{_| _-3>;2}
3)語言描述法:例:{不是直角三角形的三角形}
4)venn圖:
4、集合的分類:
有限集 含有有限個(gè)元素的集合
無限集 含有無限個(gè)元素的集合
空集 不含任何元素的集合 例:{_|_2=-5}
二、集合間的基本關(guān)系
1.“包含”關(guān)系—子集
注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。
反之: 集合a不包含于集合b,或集合b不包含集合a,記作ab或ba
2.“相等”關(guān)系:a=b (5≥5,且5≤5,則5=5)
實(shí)例:設(shè) a={_|_2-1=0} b={-1,1} “元素相同則兩集合相等”
即:① 任何一個(gè)集合是它本身的子集。aa
②真子集:如果ab,且a b那就說集合a是集合b的真子集,記作ab(或ba)
③如果 ab, bc ,那么 ac
④ 如果ab 同時(shí) ba 那么a=b
3. 不含任何元素的集合叫做空集,記為φ
規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集
【第12篇 函數(shù)定義域函數(shù)值域高一數(shù)學(xué)知識點(diǎn)總結(jié)
函數(shù)定義域 函數(shù)值域高一數(shù)學(xué)知識點(diǎn)總結(jié)
(高中函數(shù)定義)設(shè)a,b是兩個(gè)非空的數(shù)集,如果按某個(gè)確定的對應(yīng)關(guān)系f,使對于集合a中的任意一個(gè)數(shù)_,在集合b中都有唯一確定的數(shù)f(_)和它對應(yīng),那么就稱f:a--b為集合a到集合b的一個(gè)函數(shù),記作y=f(_),_屬于集合a。其中,_叫作自變量,_的取值范圍a叫作函數(shù)的定義域;
值域
名稱定義
函數(shù)中,應(yīng)變量的取值范圍叫做這個(gè)函數(shù)的值域函數(shù)的值域,在數(shù)學(xué)中是函數(shù)在定義域中應(yīng)變量所有值的集合
常用的求值域的方法
(1)化歸法;(2)圖象法(數(shù)形結(jié)合);(3)函數(shù)單調(diào)性法;(4)配方法;(5)換元法;(6)反函數(shù)法(逆求法);(7)判別式法;(8)復(fù)合函數(shù)法;(9)三角代換法;(10)基本不等式法等
關(guān)于函數(shù)值域誤區(qū)
定義域、對應(yīng)法則、值域是函數(shù)構(gòu)造的三個(gè)基本元件。平時(shí)數(shù)學(xué)中,實(shí)行定義域優(yōu)先的原則,無可置疑。然而事物均具有二重性,在強(qiáng)化定義域問題的同時(shí),往往就削弱或談化了,對值域問題的探究,造成了一手硬一手軟,使學(xué)生對函數(shù)的掌握時(shí)好時(shí)壞,事實(shí)上,定義域與值域二者的位置是相當(dāng)?shù)模^不能厚此薄皮,何況它們二者隨時(shí)處于互相轉(zhuǎn)化之中(典型的例子是互為反函數(shù)定義域與值域的相互轉(zhuǎn)化)。如果函數(shù)的值域是無限集的話,那么求函數(shù)值域不總是容易的,反靠不等式的運(yùn)算性質(zhì)有時(shí)并不能奏效,還必須聯(lián)系函數(shù)的奇偶性、單調(diào)性、有界性、周期性來考慮函數(shù)的'取值情況。才能獲得正確答案,從這個(gè)角度來講,求值域的問題有時(shí)比求定義域問題難,實(shí)踐證明,如果加強(qiáng)了對值域求法的研究和討論,有利于對定義域內(nèi)函的理解,從而深化對函數(shù)本質(zhì)的認(rèn)識。
范圍與值域相同嗎?
范圍與值域是我們在學(xué)習(xí)中經(jīng)常遇到的兩個(gè)概念,許多同學(xué)常常將它們混為一談,實(shí)際上這是兩個(gè)不同的概念。值域是所有函數(shù)值的集合(即集合中每一個(gè)元素都是這個(gè)函數(shù)的取值),而范圍則只是滿足某個(gè)條件的一些值所在的集合(即集合中的元素不一定都滿足這個(gè)條件)。也就是說:值域是一個(gè)范圍,而范圍卻不一定是值域。
以上就是由數(shù)學(xué)網(wǎng)為您提供的高一數(shù)學(xué)知識點(diǎn)總結(jié):函數(shù)定義域 函數(shù)值域,希望給您帶來幫助!
【第13篇 高一數(shù)學(xué)知識點(diǎn)冪函數(shù)的總結(jié)
高一數(shù)學(xué)知識點(diǎn)關(guān)于冪函數(shù)的總結(jié)
冪函數(shù)定義:
形如y=_^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。
定義域和值域:
當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則_肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則_不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)_為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在_大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在_小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
性質(zhì):
對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:
首先我們知道如果a=p/q,q和p都是整數(shù),則_^(p/q)=q次根號(_的p次方),如果q是奇數(shù),函數(shù)的定義域是r,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則_=1/(_^k),顯然_≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到_所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:
排除了為0與負(fù)數(shù)兩種可能,即對于_>;0,則a可以是任意實(shí)數(shù);
排除了為0這種可能,即對于_<0和_>;0的所有實(shí)數(shù),q不能是偶數(shù);
排除了為負(fù)數(shù)這種可能,即對于_為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。
總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:
如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);
如果a為負(fù)數(shù),則_肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則_不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。
在_大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。
在_小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。
而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。
由于_大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況。
可以看到:
(1)所有的圖形都通過(1,1)這點(diǎn)。
(2)當(dāng)a大于0時(shí),冪函數(shù)為單調(diào)遞增的,而a小于0時(shí),冪函數(shù)為單調(diào)遞減函數(shù)。
(3)當(dāng)a大于1時(shí),冪函數(shù)圖形下凹;當(dāng)a小于1大于0時(shí),冪函數(shù)圖形上凸。
(4)當(dāng)a小于0時(shí),a越小,圖形傾斜程度越大。
(5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點(diǎn)。
(6)顯然冪函數(shù)無界。
趣談平分
把餅?zāi)菢拥奈矬w分成2等份,可以采用一個(gè)人切而讓另一個(gè)人挑的辦法,這樣分的優(yōu)點(diǎn)是很明顯的。在第一個(gè)人看來,他必須把餅分成他認(rèn)為價(jià)值相等的兩部分,才能保證得到他應(yīng)得的那一部分;而第二個(gè)人只要選取價(jià)值大的那一部分,或在兩部分價(jià)值相等的情況下任選其中一部分,就能保證他得到他至少應(yīng)得的那一部分。在這里,我們假定物體具有在分割時(shí)不會損失它的總價(jià)值。
若要把一個(gè)物體分成3或若干等份,我們可以采用這樣的方法:這里以5個(gè)人分配來說明,對于任意多個(gè)分配者,分法大致是相同的。我們把這5個(gè)人叫做甲、乙、丙、丁、戊。甲有權(quán)利從餅上割下任一部分;乙有把甲所割出的一塊減少的自由,但沒有人強(qiáng)迫他這樣做;然后丙又有減少這一塊的自由,這樣繼續(xù)下去。假定最后是戊接觸這塊餅,那么由戊拿走這塊餅,然后把剩余的餅在甲乙丙丁四人之間平分。第二輪可一用同樣的步驟把參加的人數(shù)減少到三,以此分配下去。現(xiàn)在我們來看,每一個(gè)參加分配的`人應(yīng)如何做才能保證自己應(yīng)得的那一部分歸自己。在第一輪甲割下它認(rèn)為值1/5的一塊后,很可能沒有人再去碰它而甲就達(dá)到值1/5的那一部分;在這種情況下,他沒有做錯(cuò)。然而,如果有另一個(gè)或幾個(gè)人減少了這塊餅,那么最后接觸到他的人就要得到它,所以甲當(dāng)然認(rèn)為價(jià)值超過/5的餅被留下由4個(gè)人平分,而他是這4個(gè)人中的一個(gè)。在第二輪甲照前面的辦:如果他仍就是第一個(gè),那么他割下認(rèn)為有余下部分1/4價(jià)值的那一塊。這個(gè)策略還不完全,我們還應(yīng)指出一個(gè)分配者在他不是第一時(shí)應(yīng)怎樣做。假定乙認(rèn)為甲所個(gè)下的部分太大,也就是比他估計(jì)的整個(gè)餅的1/5大了,那么他只要把它減少到他認(rèn)為適當(dāng)?shù)拇笮?;如果他成為最后一個(gè)減少這部分餅的人,他就得到了它,而且并沒有做錯(cuò),如果他沒有得到它,那是因?yàn)樵谝乙院笥钟袆e的人接觸了它。因而在乙以后的減小者中有一人要得到被乙認(rèn)為是價(jià)值小于1/5的一塊餅,所以乙在下一輪將參加分配他認(rèn)為價(jià)值大于原來4/5的部分?,F(xiàn)在方法就清楚了:如果你在任一輪中是n個(gè)分配者的第一個(gè),那么不論放在你面前的是整個(gè)餅還是余下的部分,你總應(yīng)該割下你認(rèn)為價(jià)值時(shí)這部分餅的1/n的一塊;如果你在這一輪中不是第一個(gè),而且你看到由別人割下的一塊比你估計(jì)的那部分餅的1/n大,那你就把它減小到1/n;如果割下的你估計(jì)的那部分餅的1/n小,那你就不要?jiǎng)铀?。這個(gè)方法保證每一個(gè)人得到他認(rèn)為是應(yīng)得的部分。 高中地理
在經(jīng)濟(jì)生活中,存在著另一種分配問題:分配的是不能分割的物體,如房子、家畜、家具、汽車、藝術(shù)品等。例如一筆遺產(chǎn),包括:一座房子、一座磨坊和一輛汽車,要在享有同等繼承權(quán)的四個(gè)繼承人甲乙丙丁之間分配,需要一個(gè)公正人,請讀者想一想,應(yīng)如何去做?
高中數(shù)學(xué)再次梳理知識
1、再次梳理知識,及時(shí)查漏補(bǔ)缺
這階段,許多考生備考狀況是雜亂無章,沒有頭緒,心中無底,忐忑不安,效率低下。其實(shí)最需做的仍是梳理知識網(wǎng),查漏補(bǔ)缺。一般來說,在梳理過程中難免會遇到不是很明白的地方,這時(shí)需翻書對照,防止概念錯(cuò)誤。另外,要進(jìn)行重要和典型問題的解題方法的歸納,只有這樣才能以不變應(yīng)萬變,這里要注意各種方法的適用范圍,防止只是形式的簡單套用導(dǎo)致原理錯(cuò)誤,比如在做數(shù)列問題時(shí)不要簡單套用連續(xù)函數(shù)的性質(zhì),注意離散和連續(xù)函數(shù)的區(qū)別。
2、適量模擬練習(xí),保持臨考狀態(tài)
考前50天一定要有針對性進(jìn)行套卷訓(xùn)練,一是通過模擬可以查漏補(bǔ)缺,二是提高應(yīng)試能力,包括答題技巧,心理調(diào)節(jié)。建議大家練幾套有標(biāo)準(zhǔn)答案和評分標(biāo)準(zhǔn)的模擬卷(包括近幾年高考卷),并且自批自改,在模擬練習(xí)時(shí)一定要了解評分標(biāo)準(zhǔn),對照評分標(biāo)準(zhǔn)自我修正,提高得分的機(jī)會,力爭減少無謂的失分,保證會做的不錯(cuò)不扣分,即使不完全會做,也應(yīng)理解多少做多少,增加得分機(jī)會。
3、全科規(guī)劃意識,突破偏文學(xué)科
沖刺階段,一定要有全科規(guī)劃意識,高考是看總分的,不管是強(qiáng)勢學(xué)科還是弱勢學(xué)科都要有相應(yīng)的時(shí)間分配計(jì)劃,做到重點(diǎn)學(xué)科重點(diǎn)突破。實(shí)踐表明后期在記憶性學(xué)科上多下功夫,會立竿見影,象語文,英語,文綜,生物等,考生應(yīng)向這些學(xué)科適當(dāng)傾斜。但是思維性強(qiáng)的學(xué)科,如數(shù)學(xué),物理,若幾天不做會上手慢,出錯(cuò)率高,因此在后期也應(yīng)該安排一定的時(shí)間去做去練,保持一個(gè)良好的臨考狀態(tài)。
4、調(diào)整心理狀態(tài),爭取笑到最后
高考臨近,有些考生精神過度緊張,甚至病倒。因此提醒大家,防止兩個(gè)極端的做法,一是徹底放松,破壞了長期形成的生物鐘,會適得其反。另一個(gè)就是挑燈夜戰(zhàn),加班加點(diǎn),導(dǎo)致考前過度疲勞,臨考時(shí)打不起精神。建議考生,休息調(diào)整是必要的,但必須的是微調(diào),特別要把興奮狀態(tài)逐步調(diào)整到上午9:00——11:30,下午3:00——5:00。高考前還要注意飲食的科學(xué)性和規(guī)律性,不能大吃大喝,宜清淡又要保證全面營養(yǎng),總之,生活有節(jié)奏,亦張亦弛,保持心態(tài)平穩(wěn)。同時(shí)考前保持必勝的信心是非常必要的,走進(jìn)考場要信心百倍,即使遇到困難也不要慌張,自我暗示,及時(shí)調(diào)整,只要大家精心準(zhǔn)備,充滿自信,沉著應(yīng)戰(zhàn),就一定能笑到最后!
三角函數(shù)的性質(zhì)及三角恒等變形
一. 本周教學(xué)內(nèi)容:三角函數(shù)的性質(zhì)及三角恒等變形
考點(diǎn)梳理
一、本章內(nèi)容
1. 角的概念的推廣,弧度制.
2. 任意角的三角函數(shù)、單位圓中的三角函數(shù)、同角三角函數(shù)的基本關(guān)系、正弦、余弦的誘導(dǎo)公式.
3. 兩角和與差的正弦、余弦、正切,二倍角的正弦、余弦、正切.
4. 正弦函數(shù)、余弦函數(shù)的圖像和性質(zhì)、周期函數(shù)、函數(shù)y=asin(ω_ )的圖像、正切函數(shù)的圖像和性質(zhì)、已知三角函數(shù)值求角.
5. 余弦定理、正弦定理.利用余弦定理、正弦定理解斜三角形.
二、本章考試要求
1. 理解任意角的概念、弧度制的意義,并能正確地進(jìn)行弧度和角度的換算.
2. 掌握任意角的三角函數(shù)的定義,了解余切、正割、余割的定義,掌握同角三角函數(shù)的基本關(guān)系,掌握正弦、余弦的誘導(dǎo)公式,了解周期函數(shù)和最小正周期的意義,了解奇函數(shù)、偶函數(shù)的意義.
3. 掌握兩角和與兩角差的正弦、余弦、正切公式,掌握二倍角的正弦、余弦、正切公式.
4. 能正確地運(yùn)用三角公式,進(jìn)行簡單三角函數(shù)式的化簡、求值和恒等式證明.
5. 了解正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖像和性質(zhì),會用“五點(diǎn)法”畫正弦函數(shù)、余弦函數(shù)和函數(shù)y= asin(ω_ )的簡圖,理解a、ω、 的意義.
6. 會由已知三角函數(shù)值求角,并會用符號
命題研究
分析近五年的全國,有關(guān)三角函數(shù)的內(nèi)容平均每年有25分,約占17%.的內(nèi)容主要有兩方面;其一是考查三角函數(shù)的性質(zhì)和圖象變換;尤其是三角函數(shù)的最大值、最小值和周期,題型多為選擇題和填空題;其二是考查三角函數(shù)式的恒等變形,如利用有關(guān)公式求值,解決簡單的綜合問題,除了在填空題和選擇題中出現(xiàn)外,解答題的中檔題也經(jīng)常出現(xiàn)這方面的內(nèi)容,是命題的一個(gè)??嫉幕A(chǔ)性的題型.其命題熱點(diǎn)是章節(jié)內(nèi)部的三角函數(shù)求值問題,命題新趨勢是跨章節(jié)的學(xué)科綜合問題.的走勢,體現(xiàn)了新課標(biāo)的理念,突出了對創(chuàng)新的考查.
如:福建卷的第17題設(shè)函數(shù) ,
(2)若函數(shù) 的圖象按向量 平移后得到函數(shù) 的圖象,求實(shí)數(shù) 的值.此題“重視拓寬,開辟新領(lǐng)域”,將三角與向量交匯.
策略
三角函數(shù)是傳統(tǒng)知識內(nèi)容中變化最大的一部分,新教材處理這一部分內(nèi)容時(shí)有明顯的降調(diào)傾向,突出“和、差、倍角公式”的作用,突出正、余弦函數(shù)的主體地位,加強(qiáng)了對三角函數(shù)的圖象與性質(zhì)的考查,因此三角函數(shù)的性質(zhì)是本章復(fù)習(xí)的重點(diǎn).第一輪復(fù)習(xí)的重點(diǎn)應(yīng)放在課本知識的重現(xiàn)上,要注重抓基本知識點(diǎn)的落實(shí)、基本的再認(rèn)識和基本技能的掌握,力求系統(tǒng)化、條理化和網(wǎng)絡(luò)化,使之形成比較完整的知識體系;第二、三輪復(fù)習(xí)以基本綜合檢測題為載體,綜合試題在形式上要貼近高考試題,但不能上難度.當(dāng)然,這一部分知識最可能出現(xiàn)的是“結(jié)合實(shí)際,利用少許的三角變換(尤其是余弦的倍角公式和特殊情形下公式的應(yīng)用)來考查三角函數(shù)性質(zhì)”的命題,難度以靈活掌握倍角的余弦公式的變式運(yùn)用為宜.由于三角函數(shù)解答題是基礎(chǔ)題、常規(guī)題,屬于容易題的范疇,因此,建議三角函數(shù)的復(fù)習(xí)應(yīng)控制在課本知識的范圍和難度上,這樣就能夠適應(yīng)未來高考命題趨勢.總之,三角函數(shù)的復(fù)習(xí)應(yīng)立足基礎(chǔ)、加強(qiáng)訓(xùn)練、綜合應(yīng)用、提高能力.
解答三角函數(shù)高考題的一般策略:
(1)發(fā)現(xiàn)差異:觀察角、函數(shù)運(yùn)算間的差異,即進(jìn)行所謂的“差異分析”.
(2)尋找聯(lián)系:運(yùn)用相關(guān)三角公式,找出差異之間的內(nèi)在聯(lián)系.
(3)合理轉(zhuǎn)化:選擇恰當(dāng)?shù)娜枪?,促使差異的轉(zhuǎn)化.
三角函數(shù)恒等變形的基本策略:
(1)常值代換:特別是用“1”的代換,如1=cos2θ sin2θ=tan_?cot_=tan45°等.
(2)項(xiàng)的分拆與角的配湊.如分拆項(xiàng):sin2_ 2cos2_=(sin2_ cos2_) cos2_=1 cos2_;配湊角:α=(α β)-β,β= - 等.
(3)降次,即二倍角公式降次.
(4)化弦(切)法.將三角函數(shù)利用同角三角函數(shù)基本關(guān)系化成弦(切).
(5)引入輔助角.a(chǎn)sinθ bcosθ= sin(θ ),這里輔助角 所在象限由a、b的符號確定, 角的值由tan = 確定.
典型例題分析與解答
例1、
解法二:(從“名”入手,異名化同名)
的圖像過點(diǎn) ,且 的最大值為 的解析式;(2)由函數(shù) 圖像經(jīng)過平移是否能得到一個(gè)奇函數(shù)解析:(1) ,解得 ,
所以 ,將 的圖像,再向右平移 單位得到 的圖像先向上平移1個(gè)單位,再向右平移 單位就可以得到奇函數(shù)點(diǎn)評:本題考查的是三角函數(shù)的圖象和性質(zhì)等基礎(chǔ)知識,這是高考命題的重點(diǎn)內(nèi)容,應(yīng)于以重視.
例3、為使方程 內(nèi)有解,則 的取值范圍是( )
分析一:由方程形式,可把該方程采取換元法,轉(zhuǎn)化為二次函數(shù):設(shè)sin_=t,則原方程化為 ,于是問題轉(zhuǎn)化為:若關(guān)于 的一元二次方程 上有解,求 的取值范圍,解法如下:
分析二: 上的值域.
解法如下:
點(diǎn)評:換元法或方程思想也是高考考查的重點(diǎn),尤其是計(jì)算型試題.
例4、已知向量 的值.
所以 ;
(2) ,所以 ,所以 ,所以點(diǎn)評:本小題主要考查平面向量的概念和計(jì)算,三角函數(shù)的恒等變換的基本技能,著重考查數(shù)學(xué)運(yùn)算能力.平面向量與三角函數(shù)結(jié)合是高考命題的一個(gè)新的亮點(diǎn).
例5、已知向量 ,向量 ,且 ,
(1)求向量 與向量 的夾角為 ,向量 為 依次成等差數(shù)列,求 的取值范圍.
解析:(1)設(shè) ,由 ,有 ①
向量 ,有 ,則 ②
由①、②解得:
(2)由 垂直知 ,
由 ,則 ,
例6、如圖,某園林單位準(zhǔn)備綠化一塊直徑為bc的半圓形空地,△abc外的地方種草,△abc的內(nèi)接正方形pqrs為一水池,其余的地方種花.若bc=a,∠abc=
(1)用a, 變化時(shí),求 取最小值時(shí)的角解析:(1) ,則
固定,
令
函數(shù) 在 上是減函數(shù),于是當(dāng) .
點(diǎn)評:三角函數(shù)有著廣泛的應(yīng)用,本題就是一個(gè)典型的范例.通過引入角度,將圖形的語言轉(zhuǎn)化為三角函數(shù)的符號語言,再將其轉(zhuǎn)化為我們熟知的函數(shù) 的圖象的一條對稱軸方程是( )
a.
c. d.
2、下列函數(shù)中,以 為周期的函數(shù)是( )
a.
b.
d.
3、已知 等于( )
a.
4、已知 b.
c. d.
5、函數(shù)a、 b、 c、 d、
6、如圖,半徑為2的⊙m切直線ab于o點(diǎn),射線oc從oa出發(fā)繞著o點(diǎn)順時(shí)針方向旋轉(zhuǎn)到ob.旋轉(zhuǎn)過程中,oc交⊙m于p,記∠pmo為_,弓形pno的面積為 ,那么 的圖象是( )
7、tan15°-cot15°=( )
a. 2 b. c. 4 d.
8、給出下列的命題中,其中正確的個(gè)數(shù)是( )
(1)存在實(shí)數(shù)α,使sinαcosα=1;
(2)存在實(shí)數(shù)α,使sinα cosα= ;
(3) 的值域?yàn)椋?)
a. b. c. 在下面哪個(gè)區(qū)間內(nèi)是增函數(shù)( )
a. c.
11、若點(diǎn)p ]內(nèi)
d.
12、定義在r上的函數(shù) 即是偶函數(shù)又是周期函數(shù),若 的最小正周期是 ,且當(dāng) ,則 b. c.
二、填空題
13、 ,且當(dāng)p點(diǎn)從水面上浮現(xiàn)時(shí)開始計(jì)算時(shí)間,有以下四個(gè)結(jié)論:
; ,則其中所有正確結(jié)論的序號是 .
15、給出問題:已知 ,試判定 ,去分母整理可得 , .故 ,
(1)求函數(shù) 的奇偶性.
18、(1)已知: ,求證: 的最小值為0,求_的集合.
20、在 所對的邊分別為 ,
(1)求 ,求 的最大值.
21、已知向量 ,函數(shù) 的周期為 ,當(dāng)22、如圖,足球比賽場的寬度為a米,球門寬為b米,在足球比賽中,甲方邊鋒沿球場邊線,帶球過人沿直線向前推進(jìn).試問:該邊鋒在距乙方底線多遠(yuǎn)時(shí)起腳射門可命中角的正切值最大?(注:圖中表示乙方所守球門,所在直線為乙方底線,只考慮在同一平面上的情形).
試題答案
1、a 2、d 3、a 4、a 5、a 6、a
7、d 8、b 9、b 10、d 11、b 12、d
13、
17、解:(1) ,
定義域:r,最小正周期為 ;
(2) ,且定義域關(guān)于原點(diǎn)對稱,
所以
(2)
當(dāng) ,
當(dāng)
19、解: ,因?yàn)?,有 ,
亦即 ,由 ,
解得 ,
當(dāng) ,最大值為0,不合題意,
當(dāng) ,最小值為0,
當(dāng) 時(shí),_的集合為:
(2) ,又 時(shí), ,故 的最大值是 .
21、解:(1) 且最大值為1,所以 由 ;
(2)由(1)知,令 所以 是 的對稱軸.
22、解:以l為_軸,d點(diǎn)為坐標(biāo)原點(diǎn),建立直角坐標(biāo)系,
設(shè)ab的中點(diǎn)為m,則根據(jù)對稱性有
設(shè)動點(diǎn)c的坐標(biāo)為 ,記 ,
當(dāng)且僅當(dāng) ,
故該邊鋒在距乙方底線 時(shí)起腳射門可命中角的正切值最大.
高一數(shù)學(xué)學(xué)習(xí):集合大小定義的基本要求三
不過作為集合大小的定義,我們希望能夠比較任意兩個(gè)集合的大小。所以,對于任何給定的兩個(gè)集合a和b,或者a比b大,或者b比a大,或者一樣大,這三種情況必須有一種正確而且只能有一種正確。這樣的偏序關(guān)系被稱為“全序關(guān)系”。
最后,新的定義必須保持原來有限集合間的大小關(guān)系。有限集合間的大小關(guān)系是很清楚的,所謂的“大”,也就是集合中的元素更多,有五個(gè)元素的集合要比有四個(gè)元素的集合大,在新的擴(kuò)充了的集合定義中也必須如此。這個(gè)要求是理所當(dāng)然的,否則我們沒有理由將新的定義作為老定義的擴(kuò)充。
經(jīng)過精心的整理,有關(guān)“高一數(shù)學(xué)學(xué)習(xí):集合大小定義的基本要求三”的內(nèi)容已經(jīng)呈現(xiàn)給大家,祝大家學(xué)習(xí)愉快!
學(xué)好高中數(shù)學(xué)也需閱讀積累
閱讀,在語文中要抓住精煉的或生動形象的詞與句,而在數(shù)學(xué)中,則應(yīng)抓住關(guān)鍵的詞語。比如在初二課本第一學(xué)期第21章第五節(jié)反比例函數(shù)性質(zhì)的第一條:“當(dāng)k>;0時(shí),函數(shù)圖像的兩個(gè)分支分別在第一、三象限內(nèi),在每個(gè)象限內(nèi),自變量_逐漸增大時(shí),y的值則隨著逐漸減小。&rdquo 高中歷史;這句話中,關(guān)鍵詞語是“在每個(gè)象限內(nèi)”,反比例函數(shù)的圖像為雙曲線,而這個(gè)性質(zhì)是對于其中某一分支而言,并不是對整個(gè)函數(shù)來說的。所以在做題時(shí),應(yīng)注意到這一點(diǎn)。從這一實(shí)例來看,我們不難發(fā)現(xiàn)閱讀時(shí)抓住關(guān)鍵詞語的重要性。
積累,在語文中有利于寫作,在數(shù)學(xué)中有利于解題。積累包括兩方面:一、概念知識,二、錯(cuò)誤的題目。腦子中多一些概念就多了一些思考的方法,多了一些解題的突破口,在做較難的題目時(shí),也就得心應(yīng)手了。積累錯(cuò)誤的題目,指挑選一些自己平時(shí)易錯(cuò)或難懂的題目,記在本子上,在復(fù)習(xí)時(shí),翻看這本本子就能更加清楚地了解自己在哪些方面還有所欠缺,應(yīng)特別注意。所以積累對學(xué)好數(shù)學(xué)起著極大的作用。
自主復(fù)習(xí)最好各科交替進(jìn)行
大部分區(qū)縣都將實(shí)行全區(qū)統(tǒng)考,并將考生成績進(jìn)行大排隊(duì)。這次考試將成為考生填報(bào)高考志愿的重要參考依據(jù)??忌鷮Υ朔浅V匾暋T┘倨?,不少考生計(jì)劃把時(shí)間都用來補(bǔ)習(xí)薄弱科目。
北京老師王梅生建議,在重點(diǎn)復(fù)習(xí)薄弱學(xué)科的同時(shí),考生也要兼顧其他科目。不要在一大段時(shí)間內(nèi)把精力全部用在某一科目上,這樣容易造成頭腦疲勞,影響復(fù)習(xí)效果??忌詈脤⒏骺平惶孢M(jìn)行,文理科兼顧,強(qiáng)弱科相間,單科與綜合科目結(jié)合進(jìn)行。
此外,考生最好將各科復(fù)習(xí)時(shí)間安排得與考試時(shí)間同步。比如,考試第一天上午考語文,下午考數(shù)學(xué),第二天上午考綜合,下午考英語??忌@幾天最好上午復(fù)習(xí)語文與綜合,下午復(fù)習(xí)數(shù)學(xué)與英語,這樣有利于在相應(yīng)的時(shí)間對相應(yīng)科目產(chǎn)生興趣,提高興奮點(diǎn)。
提醒注意的是,考生在考前這幾天,不要打亂原有的生物鐘,盡量別開夜車復(fù)習(xí),并注意把學(xué)習(xí)與休息相結(jié)合,保證8小時(shí)睡眠和適度體育鍛煉。這樣才能精力充沛,保證復(fù)習(xí)效果。
【第14篇 一次函數(shù)高一數(shù)學(xué)知識點(diǎn)總結(jié)
一次函數(shù)高一數(shù)學(xué)知識點(diǎn)總結(jié)
一、定義與定義式:
自變量_和因變量y有如下關(guān)系:
y=k_+b
則此時(shí)稱y是_的一次函數(shù)。
特別地,當(dāng)b=0時(shí),y是_的正比例函數(shù)。
即:y=k_(k為常數(shù),k0)
二、一次函數(shù)的性質(zhì):
1.y的變化值與對應(yīng)的_的變化值成正比例,比值為k
即:y=k_+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))
2.當(dāng)_=0時(shí),b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1.作法與圖形:通過如下3個(gè)步驟
(1)列表;
(2)描點(diǎn);
(3)連線,可以作出一次函數(shù)的圖像一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與_軸和y軸的交點(diǎn))
2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)p(_,y),都滿足等式:y=k_+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與_軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。
3.k,b與函數(shù)圖像所在象限:
當(dāng)k0時(shí),直線必通過一、三象限,y隨_的增大而增大;
當(dāng)k0時(shí),直線必通過二、四象限,y隨_的增大而減小。
當(dāng)b0時(shí),直線必通過一、二象限;
當(dāng)b=0時(shí),直線通過原點(diǎn)
當(dāng)b0時(shí),直線必通過三、四象限。
特別地,當(dāng)b=o時(shí),直線通過原點(diǎn)o(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k0時(shí),直線只通過一、三象限;當(dāng)k0時(shí),直線只通過二、四象限。
四、確定一次函數(shù)的表達(dá)式:
已知點(diǎn)a(_1,y1);b(_2,y2),請確定過點(diǎn)a、b的一次函數(shù)的表達(dá)式。
(1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=k_+b。
(2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)p(_,y),都滿足等式y(tǒng)=k_+b。所以可以列出2個(gè)方程:y1=k_1+b①和y2=k_2+b②
(3)解這個(gè)二元一次方程,得到k,b的值。
(4)最后得到一次函數(shù)的表達(dá)式。
五、一次函數(shù)在生活中的'應(yīng)用:
1.當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。
2.當(dāng)水池抽水速度f一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量s。g=s-ft。
六、常用公式:(部分)
1.求函數(shù)圖像的k值:(y1-y2)/(_1-_2)
2.求與_軸平行線段的中點(diǎn):|_1-_2|/2
3.求與y軸平行線段的中點(diǎn):|y1-y2|/2
4.求任意線段的長:(_1-_2)^2+(y1-y2)^2(注:根號下(_1-_2)與(y1-y2)的平方和)
以上就是由數(shù)學(xué)網(wǎng)為您提供的高一數(shù)學(xué)知識點(diǎn)總結(jié):一次函數(shù),希望給您帶來幫助!
【第15篇 《函數(shù)的對稱性》高一數(shù)學(xué)知識點(diǎn)總結(jié)
《函數(shù)的對稱性》高一數(shù)學(xué)知識點(diǎn)總結(jié)
一、 函數(shù)自身的對稱性探究
定理1.函數(shù) = f (_)的圖像關(guān)于點(diǎn)a (a ,b)對稱的充要條件是
f (_) + f (2a-_) = 2b
證明:(必要性)設(shè)點(diǎn)p(_ ,)是 = f (_)圖像上任一點(diǎn),∵點(diǎn)p( _ ,)關(guān)于點(diǎn)a (a ,b)的對稱點(diǎn)p'(2a-_,2b-)也在 = f (_)圖像上,∴ 2b- = f (2a-_)
即 + f (2a-_)=2b故f (_) + f (2a-_) = 2b,必要性得證。
(充分性)設(shè)點(diǎn)p(_0,0)是 = f (_)圖像上任一點(diǎn),則0 = f (_0)
∵ f (_) + f (2a-_) =2b∴f (_0) + f (2a-_0) =2b,即2b-0 = f (2a-_0) 。
故點(diǎn)p'(2a-_0,2b-0)也在 = f (_) 圖像上,而點(diǎn)p與點(diǎn)p'關(guān)于點(diǎn)a (a ,b)對稱,充分性得征。
推論:函數(shù) = f (_)的圖像關(guān)于原點(diǎn)o對稱的充要條件是f (_) + f (-_) = 0
定理2. 函數(shù) = f (_)的圖像關(guān)于直線_ = a對稱的充要條件是
f (a +_) = f (a-_) 即f (_) = f (2a-_) (證明留給讀者)
推論:函數(shù) = f (_)的圖像關(guān)于軸對稱的充要條件是f (_) = f (-_)
定理3. ①若函數(shù) = f (_) 圖像同時(shí)關(guān)于點(diǎn)a (a ,c)和點(diǎn)b (b ,c)成中心對稱(a≠b),則 = f (_)是周期函數(shù),且2 a-b是其一個(gè)周期。
②若函數(shù) = f (_) 圖像同時(shí)關(guān)于直線_ = a 和直線_ = b成軸對稱 (a≠b),則 = f (_)是周期函數(shù),且2 a-b是其一個(gè)周期。
③若函數(shù) = f (_)圖像既關(guān)于點(diǎn)a (a ,c) 成中心對稱又關(guān)于直線_ =b成軸對稱(a≠b),則 = f (_)是周期函數(shù),且4 a-b是其一個(gè)周期。
①②的證明留給讀者,以下給出③的證明:
∵函數(shù) = f (_)圖像既關(guān)于點(diǎn)a (a ,c) 成中心對稱,
∴f (_) + f (2a-_) =2c,用2b-_代_得:
f (2b-_) + f [2a-(2b-_) ] =2c………………(_)
又∵函數(shù) = f (_)圖像直線_ =b成軸對稱,
∴ f (2b-_) = f (_)代入(_)得:
f (_) = 2c-f [2(a-b) + _]…………(__),用2(a-b)-_代_得
f [2 (a-b)+ _] = 2c-f [4(a-b) + _]代入(__)得:
f (_) = f [4(a-b) + _],故 = f (_)是周期函數(shù),且4 a-b是其一個(gè)周期。
二、 不同函數(shù)對稱性的探究
定理4. 函數(shù) = f (_)與 = 2b-f (2a-_)的圖像關(guān)于點(diǎn)a (a ,b)成中心對稱。
定理5. ①函數(shù) = f (_)與 = f (2a-_)的圖像關(guān)于直線_ = a成軸對稱。
②函數(shù) = f (_)與a-_ = f (a-)的圖像關(guān)于直線_ + = a成軸對稱。
③函數(shù) = f (_)與_-a = f ( + a)的圖像關(guān)于直線_- = a成軸對稱。
定理4與定理5中的①②證明留給讀者,現(xiàn)證定理5中的③
設(shè)點(diǎn)p(_0 ,0)是 = f (_)圖像上任一點(diǎn),則0 = f (_0)。記點(diǎn)p( _ ,)關(guān)于直線_- = a的`軸對稱點(diǎn)為p'(_1, 1),則_1 = a + 0 , 1 = _0-a ,∴_0 = a + 1 , 0= _1-a 代入0 = f (_0)之中得_1-a = f (a + 1) ∴點(diǎn)p'(_1, 1)在函數(shù)_-a = f ( + a)的圖像上。
同理可證:函數(shù)_-a = f ( + a)的圖像上任一點(diǎn)關(guān)于直線_- = a的軸對稱點(diǎn)也在函數(shù) = f (_)的圖像上。故定理5中的③成立。
推論:函數(shù) = f (_)的圖像與_ = f 的圖像關(guān)于直線_ = 成軸對稱。
三、 三角函數(shù)圖像的對稱性列表
注:①上表中∈z
② = tan _的所有對稱中心坐標(biāo)應(yīng)該是(π/2 ,0 ),而在岑申、王而冶主編的浙江教育出版社出版的21世紀(jì)高中數(shù)學(xué)精編第一冊(下)及陳兆鎮(zhèn)主編的廣西師大出版社出版的高一數(shù)學(xué)新教案(修訂版)中都認(rèn)為 = tan _的所有對稱中心坐標(biāo)是( π, 0 ),這明顯是錯(cuò)的。
四、 函數(shù)對稱性應(yīng)用舉例
例1:定義在r上的非常數(shù)函數(shù)滿足:f (10+_)為偶函數(shù),且f (5-_) = f (5+_),則f (_)一定是( ) (第十二屆希望杯高二 第二試題)
(a)是偶函數(shù),也是周期函數(shù) (b)是偶函數(shù),但不是周期函數(shù)
(c)是奇函數(shù),也是周期函數(shù) (d)是奇函數(shù),但不是周期函數(shù)
解:∵f (10+_)為偶函數(shù),∴f (10+_) = f (10-_).
∴f (_)有兩條對稱軸 _ = 5與_ =10 ,因此f (_)是以10為其一個(gè)周期的周期函數(shù), ∴_ =0即軸也是f (_)的對稱軸,因此f (_)還是一個(gè)偶函數(shù)。
故選(a)
例2:設(shè)定義域?yàn)閞的函數(shù) = f (_)、 = g(_)都有反函數(shù),并且f(_-1)和g-1(_-2)函數(shù)的圖像關(guān)于直線 = _對稱,若g(5) = 1999,那么f(4)=( )。
(a) 1999; (b)2000; (c)2001; (d)2002。
解:∵ = f(_-1)和 = g-1(_-2)函數(shù)的圖像關(guān)于直線 = _對稱,
∴ = g-1(_-2) 反函數(shù)是 = f(_-1),而 = g-1(_-2)的反函數(shù)是: = 2 + g(_), ∴f(_-1) = 2 + g(_), ∴有f(5-1) = 2 + g(5)=2001
故f(4) = 2001,應(yīng)選(c)
例3.設(shè)f(_)是定義在r上的偶函數(shù),且f(1+_)= f(1-_),當(dāng)-1≤_≤0時(shí),
f (_) = - _,則f (8.6 ) = _________ (第八屆希望杯高二 第一試題)
解:∵f(_)是定義在r上的偶函數(shù)∴_ = 0是 = f(_)對稱軸;
又∵f(1+_)= f(1-_) ∴_ = 1也是 = f (_) 對稱軸。故 = f(_)是以2為周期的周期函數(shù),∴f (8.6 ) = f (8+0.6 ) = f (0.6 ) = f (-0.6 ) = 0.3
例4.函數(shù) = sin (2_ + )的圖像的一條對稱軸的方程是( )(92全國高考理) (a) _ = - (b) _ = - (c) _ = (d) _ =
解:函數(shù) = sin (2_ + )的圖像的所有對稱軸的方程是2_ + = +
∴_ = - ,顯然取 = 1時(shí)的對稱軸方程是_ = - 故選(a)
例5. 設(shè)f(_)是定義在r上的奇函數(shù),且f(_+2)= -f(_),當(dāng)0≤_≤1時(shí),
f (_) = _,則f (7.5 ) = ( )
(a) 0.5 (b) -0.5 (c) 1.5 (d) -1.5
解:∵ = f (_)是定義在r上的奇函數(shù),∴點(diǎn)(0,0)是其對稱中心;
又∵f (_+2 )= -f (_) = f (-_),即f (1+ _) = f (1-_), ∴直線_ = 1是 = f (_) 對稱軸,故 = f (_)是周期為2的周期函數(shù)。
∴f (7.5 ) = f (8-0.5 ) = f (-0.5 ) = -f (0.5 ) =-0.5 故選(b)