歡迎光臨管理范文網(wǎng)
當(dāng)前位置:工作總結(jié) > 總結(jié)大全 > 總結(jié)范文

數(shù)學(xué)必修一總結(jié)(十六篇)

發(fā)布時(shí)間:2023-02-12 20:18:05 查看人數(shù):81

數(shù)學(xué)必修一總結(jié)

【第1篇 高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)范例

一、集合有關(guān)概念

1. 集合的含義

2. 集合的中元素的三個(gè)特性:

(1) 元素的確定性,

(2) 元素的互異性,

(3) 元素的無序性,

3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

(1) 用拉丁字母表示集合:a={我校的籃球隊(duì)員},b={1,2,3,4,5}

(2) 集合的表示方法:列舉法與描述法。

? 注意:常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集) 記作:n

正整數(shù)集 n_或 n+ 整數(shù)集z 有理數(shù)集q 實(shí)數(shù)集r

1) 列舉法:{a,b,c……}

2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。{_?r| _-3>;2} ,{_| _-3>;2}

3) 語言描述法:例:{不是直角三角形的三角形}

4) venn圖:

4、集合的分類:

(1) 有限集 含有有限個(gè)元素的集合

(2) 無限集 含有無限個(gè)元素的集合

(3) 空集 不含任何元素的集合 例:{_|_2=-5}

二、集合間的基本關(guān)系

1.“包含”關(guān)系—子集

注意: 有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。

反之: 集合a不包含于集合b,或集合b不包含集合a,記作a b或b a

2.“相等”關(guān)系:a=b (5≥5,且5≤5,則5=5)

實(shí)例:設(shè) a={_|_2-1=0} b={-1,1} “元素相同則兩集合相等”

即:① 任何一個(gè)集合是它本身的子集。a?a

②真子集:如果a?b,且a? b那就說集合a是集合b的真子集,記作a b(或b a)

③如果 a?b, b?c ,那么 a?c

④ 如果a?b 同時(shí) b?a 那么a=b

3. 不含任何元素的集合叫做空集,記為φ

規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

? 有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

三、集合的運(yùn)算

運(yùn)算類型 交 集 并 集 補(bǔ) 集

定 義 由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集.記作a b(讀作‘a(chǎn)交b’),即a b={_|_ a,且_ b}.

由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集.記作:a b(讀作‘a(chǎn)并b’),即a b ={_|_ a,或_ b}).

設(shè)s是一個(gè)集合,a是s的一個(gè)子集,由s中所有不屬于a的元素組成的集合,叫做s中子集a的補(bǔ)集(或余集)

更多資料請(qǐng)點(diǎn)擊》》http://class.hujiang.com/category/131181576619/p28_292

二、函數(shù)的有關(guān)概念

1.函數(shù)的概念:設(shè)a、b是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合a中的任意一個(gè)數(shù)_,在集合b中都有唯一確定的數(shù)f(_)和它對(duì)應(yīng),那么就稱f:a→b為從集合a到集合b的一個(gè)函數(shù).記作: y=f(_),_∈a.其中,_叫做自變量,_的取值范圍a叫做函數(shù)的定義域;與_的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(_)| _∈a }叫做函數(shù)的值域.

注意:

1.定義域:能使函數(shù)式有意義的實(shí)數(shù)_的集合稱為函數(shù)的定義域。

求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

(1)分式的分母不等于零;

(2)偶次方根的被開方數(shù)不小于零;

(3)對(duì)數(shù)式的真數(shù)必須大于零;

(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.

(5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的._的值組成的集合.

(6)指數(shù)為零底不可以等于零,

(7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.

相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));②定義域一致 (兩點(diǎn)必須同時(shí)具備)

2.值域 : 先考慮其定義域

(1)觀察法

(2)配方法

(3)代換法

3. 函數(shù)圖象知識(shí)歸納

(1)定義:在平面直角坐標(biāo)系中,以函數(shù) y=f(_) , (_∈a)中的_為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)p(_,y)的集合c,叫做函數(shù) y=f(_),(_ ∈a)的圖象.c上每一點(diǎn)的坐標(biāo)(_,y)均滿足函數(shù)關(guān)系y=f(_),反過來,以滿足y=f(_)的每一組有序?qū)崝?shù)對(duì)_、y為坐標(biāo)的點(diǎn)(_,y),均在c上 .

(2) 畫法

a、 描點(diǎn)法:

b、 圖象變換法

常用變換方法有三種

1) 平移變換

2) 伸縮變換

3) 對(duì)稱變換

4.區(qū)間的概念

(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間

(2)無窮區(qū)間

(3)區(qū)間的數(shù)軸表示.

5.映射

一般地,設(shè)a、b是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合a中的任意一個(gè)元素_,在集合b中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:a b為從集合a到集合b的一個(gè)映射。記作f:a→b

6.分段函數(shù)

(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

(2)各部分的自變量的取值情況.

(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

補(bǔ)充:復(fù)合函數(shù)

如果y=f(u)(u∈m),u=g(_)(_∈a),則 y=f[g(_)]=f(_)(_∈a) 稱為f、g的復(fù)合函數(shù)。

二.函數(shù)的性質(zhì)

1.函數(shù)的單調(diào)性(局部性質(zhì))

(1)增函數(shù)

設(shè)函數(shù)y=f(_)的定義域?yàn)閕,如果對(duì)于定義域i內(nèi)的某個(gè)區(qū)間d內(nèi)的任意兩個(gè)自變量_1,_2,當(dāng)_1

如果對(duì)于區(qū)間d上的任意兩個(gè)自變量的值_1,_2,當(dāng)_1f(_2),那么就說f(_)在這個(gè)區(qū)間上是減函數(shù).區(qū)間d稱為y=f(_)的單調(diào)減區(qū)間.

注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

(2) 圖象的特點(diǎn)

如果函數(shù)y=f(_)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(_)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

(a) 定義法:

○1 任取_1,_2∈d,且_1

○2 作差f(_1)-f(_2);

○3 變形(通常是因式分解和配方);

○4 定號(hào)(即判斷差f(_1)-f(_2)的正負(fù));

○5 下結(jié)論(指出函數(shù)f(_)在給定的區(qū)間d上的單調(diào)性).

(b)圖象法(從圖象上看升降)

(c)復(fù)合函數(shù)的單調(diào)性

復(fù)合函數(shù)f[g(_)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(_),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

8.函數(shù)的奇偶性(整體性質(zhì))

(1)偶函數(shù)

一般地,對(duì)于函數(shù)f(_)的定義域內(nèi)的任意一個(gè)_,都有f(-_)=f(_),那么f(_)就叫做偶函數(shù).

(2).奇函數(shù)

一般地,對(duì)于函數(shù)f(_)的定義域內(nèi)的任意一個(gè)_,都有f(-_)=—f(_),那么f(_)就叫做奇函數(shù).

(3)具有奇偶性的函數(shù)的圖象的特征

偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

利用定義判斷函數(shù)奇偶性的步驟:

○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;

○2確定f(-_)與f(_)的關(guān)系;

○3作出相應(yīng)結(jié)論:若f(-_) = f(_) 或 f(-_)-f(_) = 0,則f(_)是偶函數(shù);若f(-_) =-f(_) 或 f(-_)+f(_) = 0,則f(_)是奇函數(shù).

(2)由 f(-_)±f(_)=0或f(_)/f(-_)=±1來判定;

(3)利用定理,或借助函數(shù)的圖象判定 .

9、函數(shù)的解析表達(dá)式

(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.

(2)求函數(shù)的解析式的主要方法有:

1) 湊配法

2) 待定系數(shù)法

3) 換元法

4) 消參法

10.函數(shù)最大(小)值(定義見課本p36頁)

○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的最大(小)值

○2 利用圖象求函數(shù)的最大(小)值

○3 利用函數(shù)單調(diào)性的判斷函數(shù)的最大(小)值:

如果函數(shù)y=f(_)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(_)在_=b處有最大值f(b);

如果函數(shù)y=f(_)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(_)在_=b處有最小值f(b);

【第2篇 高二數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

1.1柱、錐、臺(tái)、球的結(jié)構(gòu)特征

1.2空間幾何體的三視圖和直觀圖

11三視圖:

正視圖:從前往后

側(cè)視圖:從左往右

俯視圖:從上往下

22畫三視圖的原則:

長對(duì)齊、高對(duì)齊、寬相等

33直觀圖:斜二測畫法

44斜二測畫法的步驟:

(1).平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;

(2).平行于y軸的線長度變半,平行于_,z軸的線長度不變;

(3).畫法要寫好。

5用斜二測畫法畫出長方體的步驟:(1)畫軸(2)畫底面(3)畫側(cè)棱(4)成圖

1.3空間幾何體的表面積與體積

(一)空間幾何體的表面積

1棱柱、棱錐的表面積:各個(gè)面面積之和

2圓柱的表面積3圓錐的表面積

4圓臺(tái)的表面積

5球的表面積

(二)空間幾何體的體積

1柱體的體積

2錐體的體積

3臺(tái)體的體積

4球體的體積

高二數(shù)學(xué)必修二知識(shí)點(diǎn):直線與平面的位置關(guān)系

2.1空間點(diǎn)、直線、平面之間的位置關(guān)系

2.1.1

1平面含義:平面是無限延展的

2平面的畫法及表示

(1)平面的畫法:水平放置的平面通常畫成一個(gè)平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)

(2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對(duì)的兩個(gè)頂點(diǎn)的大寫字母來表示,如平面ac、平面abcd等。

3三個(gè)公理:

(1)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)

符號(hào)表示為

a∈l

b∈l=>lα

a∈α

b∈α

公理1作用:判斷直線是否在平面內(nèi)

(2)公理2:過不在一條直線上的三點(diǎn),有且只有一個(gè)平面。

符號(hào)表示為:a、b、c三點(diǎn)不共線=>有且只有一個(gè)平面α,

使a∈α、b∈α、c∈α。

公理2作用:確定一個(gè)平面的依據(jù)。

(3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線。

符號(hào)表示為:p∈α∩β=>α∩β=l,且p∈l

公理3作用:判定兩個(gè)平面是否相交的依據(jù)

2.1.2空間中直線與直線之間的位置關(guān)系

1空間的兩條直線有如下三種關(guān)系:

共面直線

相交直線:同一平面內(nèi),有且只有一個(gè)公共點(diǎn);

平行直線:同一平面內(nèi),沒有公共點(diǎn);

異面直線:不同在任何一個(gè)平面內(nèi),沒有公共點(diǎn)。

2公理4:平行于同一條直線的兩條直線互相平行。

符號(hào)表示為:設(shè)a、b、c是三條直線

a∥b

c∥b

強(qiáng)調(diào):公理4實(shí)質(zhì)上是說平行具有傳遞性,在平面、空間這個(gè)性質(zhì)都適用。

公理4作用:判斷空間兩條直線平行的依據(jù)。

3等角定理:空間中如果兩個(gè)角的兩邊分別對(duì)應(yīng)平行,那么這兩個(gè)角相等或互補(bǔ)

4注意點(diǎn):

①a'與b'所成的角的大小只由a、b的相互位置來確定,與o的選擇無關(guān),為了簡便,點(diǎn)o一般取在兩直線中的一條上;

②兩條異面直線所成的角θ∈(0,);

③當(dāng)兩條異面直線所成的角是直角時(shí),我們就說這兩條異面直線互相垂直,記作a⊥b;

④兩條直線互相垂直,有共面垂直與異面垂直兩種情形;

⑤計(jì)算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。

2.1.3—2.1.4空間中直線與平面、平面與平面之間的位置關(guān)系

1、直線與平面有三種位置關(guān)系:

(1)直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)

(2)直線與平面相交——有且只有一個(gè)公共點(diǎn)

(3)直線在平面平行——沒有公共點(diǎn)

指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示

aαa∩α=aa∥α

2.2.直線、平面平行的判定及其性質(zhì)

2.2.1直線與平面平行的判定

1、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。

簡記為:線線平行,則線面平行。

符號(hào)表示:

bβ=>a∥α

a∥b

2.2.2平面與平面平行的判定

1、兩個(gè)平面平行的判定定理:一個(gè)平面內(nèi)的兩條交直線與另一個(gè)平面平行,則這兩個(gè)平面平行。

符號(hào)表示:

a∩b=pβ∥α

a∥α

b∥α

2、判斷兩平面平行的方法有三種:

(1)用定義;

(2)判定定理;

(3)垂直于同一條直線的兩個(gè)平面平行。

2.2.3—2.2.4直線與平面、平面與平面平行的性質(zhì)

1、定理:一條直線與一個(gè)平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。

簡記為:線面平行則線線平行。

符號(hào)表示:

a∥α

aβa∥b

α∩β=b

作用:利用該定理可解決直線間的平行問題。

2、定理:如果兩個(gè)平面同時(shí)與第三個(gè)平面相交,那么它們的交線平行。

符號(hào)表示:

α∥β

α∩γ=aa∥b

β∩γ=b

作用:可以由平面與平面平行得出直線與直線平行

2.3直線、平面垂直的判定及其性質(zhì)

2.3.1直線與平面垂直的判定

1、定義

如果直線l與平面α內(nèi)的任意一條直線都垂直,我們就說直線l與平面α互相垂直,記作l⊥α,直線l叫做平面α的垂線,平面α叫做直線l的垂面。直線與平面垂直時(shí),它們公共點(diǎn)p叫做垂足。

2、判定定理:一條直線與一個(gè)平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。

注意點(diǎn):a)定理中的“兩條相交直線”這一條件不可忽視;

b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。

2.3.2平面與平面垂直的判定

1、二面角的概念:表示從空間一直線出發(fā)的兩個(gè)半平面所組成的圖形

2、二面角的記法:二面角α-l-β或α-ab-β

3、兩個(gè)平面互相垂直的判定定理:一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直。

2.3.3—2.3.4直線與平面、平面與平面垂直的性質(zhì)

1、定理:垂直于同一個(gè)平面的兩條直線平行。

2性質(zhì)定理:兩個(gè)平面垂直,則一個(gè)平面內(nèi)垂直于交線的直線與另一個(gè)平面垂直。

【第3篇 2023高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

第一章 集合與函數(shù)概念

一、集合有關(guān)概念

1.集合的含義

2.集合的中元素的三個(gè)特性:

(1)元素的確定性如:世界上的山

(2)元素的互異性如:由happy的字母組成的集合{h,a,p,y}

(3)元素的無序性: 如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:a={我校的籃球隊(duì)員},b={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

注意:常用數(shù)集及其記法:_ kb 1.c om

非負(fù)整數(shù)集(即自然數(shù)集) 記作:n

正整數(shù)集 :n_或 n+

整數(shù)集: z

有理數(shù)集: q

實(shí)數(shù)集: r

1)列舉法:{a,b,c……}

2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合{_?r|_-3>2} ,{_|_-3>2}

3) 語言描述法:例:{不是直角三角形的三角形}

4) venn圖:

4、集合的分類:

(1)有限集 含有有限個(gè)元素的集合

(2)無限集 含有無限個(gè)元素的集合

(3)空集 不含任何元素的集合 例:{_|_2=-5}

二、集合間的基本關(guān)系

1.“包含”關(guān)系—子集

注意: 有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。

反之: 集合a不包含于集合b,或集合b不包含集合a,記作a b或b a

2.“相等”關(guān)系:a=b (5≥5,且5≤5,則5=5)

實(shí)例:設(shè) a={_|_2-1=0} b={-1,1} “元素相同則兩集合相等”

即:① 任何一個(gè)集合是它本身的子集。a?a

② 真子集:如果a?b,且a? b那就說集合a是集合b的真子集,記作a b(或b a)

③ 如果 a?b, b?c ,那么 a?c

④ 如果a?b 同時(shí) b?a 那么a=b

3. 不含任何元素的集合叫做空集,記為φ

規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

4.子集個(gè)數(shù):

有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集,含有2n-1個(gè)非空子集,含有2n-1個(gè)非空真子集

三、集合的運(yùn)算

運(yùn)算類型 交 集 并 集 補(bǔ) 集

定 義 由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集.記作a b(讀作‘a(chǎn)交b’),即a b={_|_ a,且_ b}.

由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集.記作:a b(讀作‘a(chǎn)并b’),即a b ={_|_ a,或_ b}).

設(shè)s是一個(gè)集合,a是s的一個(gè)子集,由s中所有不屬于a的元素組成的集合,叫做s中子集a的補(bǔ)集(或余集)

記作 ,即

csa=

質(zhì) a a=a

a φ=φ

a b=b a

a b a

a b b

a a=a

a φ=a

a b=b a

a b a

a b b

(cua) (cub)

= cu (a b)

(cua) (cub)

= cu(a b)

a (cua)=u

a (cua)= φ.

二、函數(shù)的有關(guān)概念

1.函數(shù)的概念

設(shè)a、b是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合a中的任意一個(gè)數(shù)_,在集合b中都有確定的數(shù)f(_)和它對(duì)應(yīng),那么就稱f:a→b為從集合a到集合b的一個(gè)函數(shù).記作: y=f(_),_∈a.其中,_叫做自變量,_的取值范圍a叫做函數(shù)的定義域;與_的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(_)| _∈a }叫做函數(shù)的值域.

注意:

1.定義域:能使函數(shù)式有意義的實(shí)數(shù)_的集合稱為函數(shù)的定義域。

求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:

(1)分式的分母不等于零;

(2)偶次方根的被開方數(shù)不小于零;

(3)對(duì)數(shù)式的真數(shù)必須大于零;

(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.

(5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的_的值組成的集合.

(6)指數(shù)為零底不可以等于零,

(7)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.

相同函數(shù)的判斷方法:①表達(dá)式相同(與表示自變量和函數(shù)值的字母無關(guān));

②定義域一致 (兩點(diǎn)必須同時(shí)具備)

2.值域 : 先考慮其定義域

(1)觀察法 (2)配方法 (3)代換法

3. 函數(shù)圖象知識(shí)歸納

(1)定義:

在平面直角坐標(biāo)系中,以函數(shù) y=f(_) , (_∈a)中的_為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)p(_,y)的集合c,叫做函數(shù) y=f(_),(_ ∈a)的圖象.c上每一點(diǎn)的坐標(biāo)(_,y)均滿足函數(shù)關(guān)系y=f(_),反過來,以滿足y=f(_)的每一組有序?qū)崝?shù)對(duì)_、y為坐標(biāo)的點(diǎn)(_,y),均在c上 .

(2) 畫法

1.描點(diǎn)法: 2.圖象變換法:常用變換方法有三種:1)平移變換2)伸縮變換3)對(duì)稱變換

4.區(qū)間的概念

(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間 (2)無窮區(qū)間 (3)區(qū)間的數(shù)軸表示.

5.映射

一般地,設(shè)a、b是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合a中的任意一個(gè)元素_,在集合b中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:a b為從集合a到集合b的一個(gè)映射。記作“f(對(duì)應(yīng)關(guān)系):a(原象) b(象)”

對(duì)于映射f:a→b來說,則應(yīng)滿足:

(1)集合a中的每一個(gè)元素,在集合b中都有象,并且象是的;

(2)集合a中不同的元素,在集合b中對(duì)應(yīng)的象可以是同一個(gè);

(3)不要求集合b中的每一個(gè)元素在集合a中都有原象。

6.分段函數(shù)

(1)在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。

(2)各部分的自變量的取值情況.

(3)分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集.

補(bǔ)充:復(fù)合函數(shù)

如果y=f(u)(u∈m),u=g(_)(_∈a),則 y=f[g(_)]=f(_)(_∈a) 稱為f、g的復(fù)合函數(shù)。

二.函數(shù)的性質(zhì)

1.函數(shù)的單調(diào)性(局部性質(zhì))

(1)增函數(shù)

設(shè)函數(shù)y=f(_)的定義域?yàn)閕,如果對(duì)于定義域i內(nèi)的某個(gè)區(qū)間d內(nèi)的任意兩個(gè)自變量_1,_2,當(dāng)_1

如果對(duì)于區(qū)間d上的任意兩個(gè)自變量的值_1,_2,當(dāng)_1

注意:函數(shù)的單調(diào)性是函數(shù)的局部性質(zhì);

(2) 圖象的特點(diǎn)

如果函數(shù)y=f(_)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(_)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

(a) 定義法:

(1)任取_1,_2∈d,且_1

(2)作差f(_1)-f(_2);或者做商

(3)變形(通常是因式分解和配方);

(4)定號(hào)(即判斷差f(_1)-f(_2)的正負(fù));

(5)下結(jié)論(指出函數(shù)f(_)在給定的區(qū)間d上的單調(diào)性).

(b)圖象法(從圖象上看升降)

(c)復(fù)合函數(shù)的單調(diào)性

復(fù)合函數(shù)f[g(_)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(_),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律:“同增異減”

注意:函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.

8.函數(shù)的奇偶性(整體性質(zhì))

(1)偶函數(shù):一般地,對(duì)于函數(shù)f(_)的定義域內(nèi)的任意一個(gè)_,都有f(-_)=f(_),那么f(_)就叫做偶函數(shù).

(2)奇函數(shù):一般地,對(duì)于函數(shù)f(_)的定義域內(nèi)的任意一個(gè)_,都有f(-_)=—f(_),那么f(_)就叫做奇函數(shù).

(3)具有奇偶性的函數(shù)的圖象的特征:偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

9.利用定義判斷函數(shù)奇偶性的步驟:

○1首先確定函數(shù)的定義域,并判斷其是否關(guān)于原點(diǎn)對(duì)稱;

○2確定f(-_)與f(_)的關(guān)系;

○3作出相應(yīng)結(jié)論:若f(-_) = f(_) 或 f(-_)-f(_) = 0,則f(_)是偶函數(shù);若f(-_) =-f(_) 或 f(-_)+f(_) = 0,則f(_)是奇函數(shù).

注意:函數(shù)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不對(duì)稱則函數(shù)是非奇非偶函數(shù).若對(duì)稱,(1)再根據(jù)定義判定; (2)由 f(-_)±f(_)=0或f(_)/f(-_)=±1來判定; (3)利用定理,或借助函數(shù)的圖象判定 .

10、函數(shù)的解析表達(dá)式

(1)函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.

(2)求函數(shù)的解析式的主要方法有:1.湊配法2.待定系數(shù)法3.換元法4.消參法

11.函數(shù)(小)值

○1 利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(?。┲?/p>

○2 利用圖象求函數(shù)的(?。┲?/p>

○3 利用函數(shù)單調(diào)性的判斷函數(shù)的(?。┲担?/p>

如果函數(shù)y=f(_)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(_)在_=b處有值f(b);

如果函數(shù)y=f(_)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(_)在_=b處有最小值f(b);

第三章 基本初等函數(shù)

一、指數(shù)函數(shù)

(一)指數(shù)與指數(shù)冪的運(yùn)算

1.根式的概念:一般地,如果 ,那么 叫做 的 次方根,其中 >1,且 ∈ _.

負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作 。

當(dāng) 是奇數(shù)時(shí), ,當(dāng) 是偶數(shù)時(shí),

2.分?jǐn)?shù)指數(shù)冪

正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

,

0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

(1) · ;

(2) ;

(3) .

(二)指數(shù)函數(shù)及其性質(zhì)

1、指數(shù)函數(shù)的概念:一般地,函數(shù) 叫做指數(shù)函數(shù),其中_是自變量,函數(shù)的定義域?yàn)閞.

注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

2、指數(shù)函數(shù)的圖象和性質(zhì)

a>1 0<1

定義域 r 定義域 r

值域y>0 值域y>0

在r上單調(diào)遞增 在r上單調(diào)遞減

非奇非偶函數(shù) 非奇非偶函數(shù)

函數(shù)圖象都過定點(diǎn)(0,1) 函數(shù)圖象都過定點(diǎn)(0,1)

注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:

(1)在[a,b]上, 值域是 或 ;

(2)若 ,則 ; 取遍所有正數(shù)當(dāng)且僅當(dāng) ;

(3)對(duì)于指數(shù)函數(shù) ,總有 ;

二、對(duì)數(shù)函數(shù)

(一)對(duì)數(shù)

1.對(duì)數(shù)的概念:

一般地,如果 ,那么數(shù) 叫做以 為底 的對(duì)數(shù),記作: ( — 底數(shù), — 真數(shù), — 對(duì)數(shù)式)

說明:○1 注意底數(shù)的限制 ,且 ;

○2 ;

○3 注意對(duì)數(shù)的書寫格式.

兩個(gè)重要對(duì)數(shù):

○1 常用對(duì)數(shù):以10為底的對(duì)數(shù) ;

○2 自然對(duì)數(shù):以無理數(shù) 為底的對(duì)數(shù)的對(duì)數(shù) .

指數(shù)式與對(duì)數(shù)式的互化

冪值 真數(shù)

= n = b

底數(shù)

指數(shù) 對(duì)數(shù)

(二)對(duì)數(shù)的運(yùn)算性質(zhì)

如果 ,且 , , ,那么:

○1 · + ;

○2 - ;

○3 .

注意:換底公式: ( ,且 ; ,且 ; ).

利用換底公式推導(dǎo)下面的結(jié)論:(1) ;(2) .

(3)、重要的公式 ①、負(fù)數(shù)與零沒有對(duì)數(shù); ②、 , ③、對(duì)數(shù)恒等式

(二)對(duì)數(shù)函數(shù)

1、對(duì)數(shù)函數(shù)的概念:函數(shù) ,且 叫做對(duì)數(shù)函數(shù),其中 是自變量,函數(shù)的定義域是(0,+∞).

注意:○1 對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。如: , 都不是對(duì)數(shù)函數(shù),而只能稱其為對(duì)數(shù)型函數(shù).

○2 對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制: ,且 .

2、對(duì)數(shù)函數(shù)的性質(zhì):

a>1 0<1

定義域_>0 定義域_>0

值域?yàn)閞 值域?yàn)閞

在r上遞增 在r上遞減

函數(shù)圖象都過定點(diǎn)(1,0) 函數(shù)圖象都過定點(diǎn)(1,0)

(三)冪函數(shù)

1、冪函數(shù)定義:一般地,形如 的函數(shù)稱為冪函數(shù),其中 為常數(shù).

2、冪函數(shù)性質(zhì)歸納.

(1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(diǎn)(1,1);

(2) 時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間 上是增函數(shù).特別地,當(dāng) 時(shí),冪函數(shù)的圖象下凸;當(dāng) 時(shí),冪函數(shù)的圖象上凸;

(3) 時(shí),冪函數(shù)的圖象在區(qū)間 上是減函數(shù).在第一象限內(nèi),當(dāng) 從右邊趨向原點(diǎn)時(shí),圖象在 軸右方無限地逼近 軸正半軸,當(dāng) 趨于 時(shí),圖象在 軸上方無限地逼近 軸正半軸.

第四章 函數(shù)的應(yīng)用

一、方程的根與函數(shù)的零點(diǎn)

1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù) ,把使 成立的實(shí)數(shù) 叫做函數(shù) 的零點(diǎn)。

2、函數(shù)零點(diǎn)的意義:函數(shù) 的零點(diǎn)就是方程 實(shí)數(shù)根,亦即函數(shù) 的圖象與 軸交點(diǎn)的橫坐標(biāo)。

即:方程 有實(shí)數(shù)根 函數(shù) 的圖象與 軸有交點(diǎn) 函數(shù) 有零點(diǎn).

3、函數(shù)零點(diǎn)的求法:

○1 (代數(shù)法)求方程 的實(shí)數(shù)根;

○2 (幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù) 的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

4、二次函數(shù)的零點(diǎn):

二次函數(shù) .

(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

(2)△=0,方程 有兩相等實(shí)根,二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

(3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn).

5.函數(shù)的模型

【第4篇 高三上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

導(dǎo)語高三學(xué)生很快就會(huì)面臨繼續(xù)學(xué)業(yè)或事業(yè)的選擇。面對(duì)重要的人生選擇,是否考慮清楚了?這對(duì)于沒有社會(huì)經(jīng)驗(yàn)的學(xué)生來說,無疑是個(gè)困難的想選擇。如何度過這重要又緊張的一年,我們可以從提高學(xué)習(xí)效率來著手!高三頻道為各位同學(xué)整理了《高三上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)》,希望你努力學(xué)習(xí),圓金色六月夢(mèng)!

1.高三上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

兩個(gè)平面平行的主要性質(zhì):

(1)由定義知:“兩平行平面沒有公共點(diǎn)”;

(2)由定義推得:“兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面”;

(3)兩個(gè)平面平行的性質(zhì)定理:“如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行”;

(4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面;

(5)夾在兩個(gè)平行平面間的平行線段相等;

(6)經(jīng)過平面外一點(diǎn)只有一個(gè)平面和已知平面平行。

2.高三上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

1.不等式的定義

在客觀世界中,量與量之間的不等關(guān)系是普遍存在的,我們用數(shù)學(xué)符號(hào)連接兩個(gè)數(shù)或代數(shù)式以表示它們之間的不等關(guān)系,含有這些不等號(hào)的式子,叫做不等式.

2.比較兩個(gè)實(shí)數(shù)的大小

兩個(gè)實(shí)數(shù)的大小是用實(shí)數(shù)的運(yùn)算性質(zhì)來定義的,

有a-b>0?;a-b=0?;a-b<0?.

另外,若b>0,則有>1?;=1?;<1?.

概括為:作差法,作商法,中間量法等.

3.不等式的性質(zhì)

(1)對(duì)稱性:a>b?;

(2)傳遞性:a>b,b>c?;

(3)可加性:a>b?a+cb+c,a>b,c>d?a+cb+d;

(4)可乘性:a>b,c>0?ac>bc;a>b>0,c>d>0?;

(5)可乘方:a>b>0?(n∈n,n≥2);

(6)可開方:a>b>0?(n∈n,n≥2).

復(fù)習(xí)指導(dǎo)

1.“一個(gè)技巧”作差法變形的技巧:作差法中變形是關(guān)鍵,常進(jìn)行因式分解或配方.

2.“一種方法”待定系數(shù)法:求代數(shù)式的范圍時(shí),先用已知的代數(shù)式表示目標(biāo)式,再利用多項(xiàng)式相等的法則求出參數(shù),最后利用不等式的性質(zhì)求出目標(biāo)式的范圍.

3.“兩條常用性質(zhì)”

(1)倒數(shù)性質(zhì):

①a>b,ab>0?<;

②a<0

③a>b>0,0;

④0

(2)若a>b>0,m>0,則

①真分?jǐn)?shù)的性質(zhì):<;>(b-m>0);

②假分?jǐn)?shù)的性質(zhì):>;<(b-m>0).

4.高三上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

1、連續(xù)、間斷點(diǎn)以及間斷點(diǎn)的分類:判斷間斷點(diǎn)類型的基礎(chǔ)是求函數(shù)在間斷點(diǎn)處的左右極限;

2、可導(dǎo)和可微,分段函數(shù)在分段點(diǎn)處的導(dǎo)數(shù)或可導(dǎo)性,一律通過導(dǎo)數(shù)定義直接計(jì)算或檢驗(yàn)存在的定義是極限存在;

3、漸近線,(垂直、水平或斜漸近線);

4、多元函數(shù)積分學(xué),二重極限的討論計(jì)算難度較大,??疾樽C明極限不存在.

下面我們重點(diǎn)講一下數(shù)列極限的典型方法.

重要題型及點(diǎn)撥

1.求數(shù)列極限

求數(shù)列極限可以歸納為以下三種形式.

★抽象數(shù)列求極限

這類題一般以選擇題的形式出現(xiàn),因此可以通過舉反例來排除.此外,也可以按照定義、基本性質(zhì)及運(yùn)算法則直接驗(yàn)證.

★求具體數(shù)列的極限,可以參考以下幾種方法:

a.利用單調(diào)有界必收斂準(zhǔn)則求數(shù)列極限.

首先,用數(shù)學(xué)歸納法或不等式的放縮法判斷數(shù)列的單調(diào)性和有界性,進(jìn)而確定極限存在性;其次,通過遞推關(guān)系中取極限,解方程,從而得到數(shù)列的極限值.

b.利用函數(shù)極限求數(shù)列極限

如果數(shù)列極限能看成某函數(shù)極限的特例,形如,則利用函數(shù)極限和數(shù)列極限的關(guān)系轉(zhuǎn)化為求函數(shù)極限,此時(shí)再用洛必達(dá)法則求解.

★求項(xiàng)和或項(xiàng)積數(shù)列的極限,主要有以下幾種方法:

a.利用特殊級(jí)數(shù)求和法

如果所求的項(xiàng)和式極限中通項(xiàng)可以通過錯(cuò)位相消或可以轉(zhuǎn)化為極限已知的一些形式,那么通過整理可以直接得出極限結(jié)果.

b.利用冪級(jí)數(shù)求和法

若可以找到這個(gè)級(jí)數(shù)所對(duì)應(yīng)的冪級(jí)數(shù),則可以利用冪級(jí)數(shù)函數(shù)的方法把它所對(duì)應(yīng)的和函數(shù)求出,再根據(jù)這個(gè)極限的形式代入相應(yīng)的變量求出函數(shù)值.

c.利用定積分定義求極限

若數(shù)列每一項(xiàng)都可以提出一個(gè)因子,剩余的項(xiàng)可用一個(gè)通項(xiàng)表示,則可以考慮用定積分定義求解數(shù)列極限.

d.利用夾逼定理求極限

若數(shù)列每一項(xiàng)都可以提出一個(gè)因子,剩余的項(xiàng)不能用一個(gè)通項(xiàng)表示,但是其余項(xiàng)是按遞增或遞減排列的,則可以考慮用夾逼定理求解.

e.求項(xiàng)數(shù)列的積的極限,一般先取對(duì)數(shù)化為項(xiàng)和的形式,然后利用求解項(xiàng)和數(shù)列極限的方法進(jìn)行計(jì)算.

5.高三上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

一、定義與定義式:

自變量_和因變量y有如下關(guān)系:

y=k_+b

則此時(shí)稱y是_的一次函數(shù)。

特別地,當(dāng)b=0時(shí),y是_的正比例函數(shù)。

即:y=k_(k為常數(shù),k≠0)

二、一次函數(shù)的性質(zhì):

1.y的變化值與對(duì)應(yīng)的_的變化值成正比例,比值為k

即:y=k_+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

2.當(dāng)_=0時(shí),b為函數(shù)在y軸上的截距。

三、一次函數(shù)的圖像及性質(zhì):

1.作法與圖形:通過如下3個(gè)步驟

(1)列表;

(2)描點(diǎn);

(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與_軸和y軸的交點(diǎn))

2.性質(zhì):

(1)在一次函數(shù)上的任意一點(diǎn)p(_,y),都滿足等式:y=k_+b。

(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與_軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。

6.高三上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

(1)直線的傾斜角

定義:_軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與_軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點(diǎn)的直線的斜率公式:

注意下面四點(diǎn):

(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與p1、p2的順序無關(guān);

(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

【第5篇 數(shù)學(xué)必修一第一單元知識(shí)點(diǎn)總結(jié)

數(shù)學(xué)人教版必修一第一單元知識(shí)點(diǎn)總結(jié)

在人類歷史發(fā)展和社會(huì)生活中,數(shù)學(xué)發(fā)揮著不可替代的作用,小編準(zhǔn)備了高一數(shù)學(xué)人教版必修一第一單元知識(shí)點(diǎn),具體請(qǐng)看以下內(nèi)容。

1.函數(shù)的基本概念

(1)函數(shù)的定義:設(shè)a、b是非空數(shù)集,如果按照某種確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合a中的任意一個(gè)數(shù)_,在集合b中都有唯一確定的數(shù)f(_)和它對(duì)應(yīng),那么稱f:a→b為從集合a到集合b的一個(gè)函數(shù),記作:y=f(_),_∈a.

(2)函數(shù)的定義域、值域

在函數(shù)y=f(_),_∈a中,_叫自變量,_的取值范圍a叫做定義域,與_的值對(duì)應(yīng)的y值叫函數(shù)值,函數(shù)值的集合{f(_)|_∈a}叫值域.值域是集合b的子集.

(3)函數(shù)的三要素:定義域、值域和對(duì)應(yīng)關(guān)系.

(4)相等函數(shù):如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,則這兩個(gè)函數(shù)相等;這是判斷兩函數(shù)相等的依據(jù).

2.函數(shù)的三種表示方法

表示函數(shù)的常用方法有:解析法、列表法、圖象法.

3.映射的概念

一般地,設(shè)a、b是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合a中的任意一個(gè)元素_,在集合b中都有唯一確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:a→b為從集合a到集合b的一個(gè)映射.

注意:

一個(gè)方法

求復(fù)合函數(shù)y=f(t),t=q(_)的定義域的方法:

①若y=f(t)的'定義域?yàn)?a,b),則解不等式得a

兩個(gè)防范

(1)解決函數(shù)問題,必須優(yōu)先考慮函數(shù)的定義域.

(2)用換元法解題時(shí),應(yīng)注意換元前后的等價(jià)性.

三個(gè)要素

函數(shù)的三要素是:定義域、值域和對(duì)應(yīng)關(guān)系.值域是由函數(shù)的定義域和對(duì)應(yīng)關(guān)系所確定的.兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致時(shí),則認(rèn)為兩個(gè)函數(shù)相等.函數(shù)是特殊的映射,映射f:a→b的三要素是兩個(gè)集合a、b和對(duì)應(yīng)關(guān)系f.

高中是人生中的關(guān)鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高一數(shù)學(xué)人教版必修一第一單元知識(shí)點(diǎn),希望大家喜歡。

【第6篇 2023高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)集合有關(guān)概念

集合的含義

集合的中元素的三個(gè)特性:

元素的確定性如:世界上的山

元素的互異性如:由happy的字母組成的集合{h,a,p,y}

元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

用拉丁字母表示集合:a={我校的籃球隊(duì)員},b={1,2,3,4,5}

集合的表示方法:列舉法與描述法。

注意:常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:n

正整數(shù)集n_或n+整數(shù)集z有理數(shù)集q實(shí)數(shù)集r

列舉法:{a,b,c……}

描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。{_(r|_-3>2},{_|_-3>2}

語言描述法:例:{不是直角三角形的三角形}

venn圖:

4、集合的分類:

有限集含有有限個(gè)元素的集合

無限集含有無限個(gè)元素的集合

空集不含任何元素的集合例:{_|_2=-5}

高一數(shù)學(xué)集合間的基本關(guān)系

1.“包含”關(guān)系—子集

注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。

反之:集合a不包含于集合b,或集合b不包含集合a,記作ab或ba

2.“相等”關(guān)系:a=b(5≥5,且5≤5,則5=5)

實(shí)例:設(shè)a={_|_2-1=0}b={-1,1}“元素相同則兩集合相等”

即:①任何一個(gè)集合是它本身的子集。a(a

②真子集:如果a(b,且a(b那就說集合a是集合b的真子集,記作ab(或ba)

③如果a(b,b(c,那么a(c

④如果a(b同時(shí)b(a那么a=b

3.不含任何元素的集合叫做空集,記為φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

高一數(shù)學(xué)考試命題趨勢

1.函數(shù)知識(shí):基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識(shí)為背景的函數(shù)問題;以向量知識(shí)為背景的函數(shù)問題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。

2.向量知識(shí):向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運(yùn)算律;考查平面向量的坐標(biāo)運(yùn)算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問題。

3.不等式知識(shí):突出工具性,淡化獨(dú)立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來,考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識(shí)為背景,在知識(shí)網(wǎng)絡(luò)的交匯處命題,綜合性強(qiáng),能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起??疾閷W(xué)生的等價(jià)轉(zhuǎn)化能力和分類討論能力;以當(dāng)前經(jīng)濟(jì)、社會(huì)生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點(diǎn),主要考查學(xué)生閱讀理解能力以及分析問題、解決問題的能力。

4.立體幾何知識(shí):2023年已經(jīng)變得簡單,2023年難度依然不大,基本的三視圖的考查難點(diǎn)不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計(jì)算等問題,都是重點(diǎn)考查內(nèi)容。

5.解析幾何知識(shí):小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標(biāo)下的解析幾何知識(shí),解答題主要考查直線和圓的知識(shí),直線與圓錐曲線的知識(shí),涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點(diǎn),定值,范圍的考查,考試的難度降低。

6.導(dǎo)數(shù)知識(shí):導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強(qiáng),能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點(diǎn)整體偏低。

7.開放型創(chuàng)新題:答案不,或是邏輯推理題,以及解答題中的開放型試題的考查,都是重點(diǎn),理科13,文科14題。

【第7篇 高一數(shù)學(xué)必修一平面向量知識(shí)點(diǎn)總結(jié)

高一數(shù)學(xué)必修一平面向量知識(shí)點(diǎn)總結(jié)

數(shù)量:只有大小,沒有方向的量.

有向線段的三要素:起點(diǎn)、方向、長度.

零向量:長度為的向量.

單位向量:長度等于個(gè)單位的向量.

相等向量:長度相等且方向相同的向量

&向量的運(yùn)算

加法運(yùn)算

ab+bc=ac,這種計(jì)算法則叫做向量加法的三角形法則。

已知兩個(gè)從同一點(diǎn)o出發(fā)的兩個(gè)向量oa、ob,以oa、ob為鄰邊作平行四邊形oacb,則以o為起點(diǎn)的對(duì)角線oc就是向量oa、ob的和,這種計(jì)算法則叫做向量加法的平行四邊形法則。

對(duì)于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法滿足所有的加法運(yùn)算定律。

減法運(yùn)算

與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

數(shù)乘運(yùn)算

實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘,記作λa,|λa|=|λ||a|,當(dāng)λ >;0時(shí),λa的方向和a的方向相同,當(dāng)λ< 0時(shí),λa的方向和a的方向相反,當(dāng)λ = 0時(shí),λa = 0。

設(shè)λ、μ是實(shí)數(shù),那么:(1)(λμ)a = λ(μa)(2)(λμ)a = λa μa(3)λ(a ± b) = λa ±λb(4)(-λ)a =-(λa) = λ(-a)。

向量的加法運(yùn)算、減法運(yùn)算、數(shù)乘運(yùn)算統(tǒng)稱線性運(yùn)算。

向量的數(shù)量積

已知兩個(gè)非零向量a、b,那么|a||b|cos θ叫做a與b的數(shù)量積或內(nèi)積,記作a?b,θ是a與b的夾角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的'數(shù)量積為0。

a?b的幾何意義:數(shù)量積a?b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。

兩個(gè)向量的數(shù)量積等于它們對(duì)應(yīng)坐標(biāo)的乘積的和。

【第8篇 高一數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié):冪函數(shù)的性質(zhì)考點(diǎn)

高一數(shù)學(xué)必修1知識(shí)點(diǎn)總結(jié):冪函數(shù)的性質(zhì)考點(diǎn)

定義:

形如y=_^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

定義域和值域:

當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:

如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

如果a為負(fù)數(shù),則_肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則_不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)_為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:

在_大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。

在_小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。

而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

性質(zhì):

對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數(shù),則_^(p/q)=q次根號(hào)(_的p次方),如果q是奇數(shù),函數(shù)的定義域是r,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則_=1/(_^k),顯然_≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞)。因此可以看到_所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

排除了為0與負(fù)數(shù)兩種可能,即對(duì)于_>;0,則a可以是任意實(shí)數(shù);

排除了為0這種可能,即對(duì)于_<;0和_>;0的所有實(shí)數(shù),q不能是偶數(shù);

排除了為負(fù)數(shù)這種可能,即對(duì)于_為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:

如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);

【第9篇 高一數(shù)學(xué)必修一:各章知識(shí)點(diǎn)總結(jié)

導(dǎo)語心無旁騖,全力以赴,爭分奪秒,頑強(qiáng)拼搏腳踏實(shí)地,不驕不躁,長風(fēng)破浪,直濟(jì)滄海,我們,注定成功!高一頻道為大家推薦《高一數(shù)學(xué)必修一:各章知識(shí)點(diǎn)總結(jié)》希望對(duì)你的學(xué)習(xí)有幫助!

第一章集合與函數(shù)概念

一、集合有關(guān)概念

1、集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素。

2、集合的中元素的三個(gè)特性:

1.元素的確定性;2.元素的互異性;3.元素的無序性

說明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素。

(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素。

(3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。

(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性。

3、集合的表示:{…}如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

1.用拉丁字母表示集合:a={我校的籃球隊(duì)員},b={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法。

注意?。撼S脭?shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:n

正整數(shù)集n_或n+整數(shù)集z有理數(shù)集q實(shí)數(shù)集r

關(guān)于“屬于”的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合a的元素,就說a屬于集合a記作a∈a,相反,a不屬于集合a記作a?a

列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上。

描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法。

①語言描述法:例:{不是直角三角形的三角形}

②數(shù)學(xué)式子描述法:例:不等式_-3>2的解集是{_?r|_-3>2}或{_|_-3>2}

4、集合的分類:

1.有限集含有有限個(gè)元素的集合

2.無限集含有無限個(gè)元素的集合

3.空集不含任何元素的集合例:{_|_2=-5}

二、集合間的基本關(guān)系

1.“包含”關(guān)系—子集

注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。

反之:集合a不包含于集合b,或集合b不包含集合a,記作ab或ba

2.“相等”關(guān)系(5≥5,且5≤5,則5=5)

實(shí)例:設(shè)a={_|_2-1=0}b={-1,1}“元素相同”

結(jié)論:對(duì)于兩個(gè)集合a與b,如果集合a的任何一個(gè)元素都是集合b的元素,同時(shí),集合b的任何一個(gè)元素都是集合a的元素,我們就說集合a等于集合b,即:a=b

①任何一個(gè)集合是它本身的子集。aía

②真子集:如果aíb,且a1b那就說集合a是集合b的真子集,記作ab(或ba)

③如果aíb,bíc,那么aíc

④如果aíb同時(shí)bía那么a=b

3.不含任何元素的集合叫做空集,記為φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

三、集合的運(yùn)算

1.交集的定義:一般地,由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集.

記作a∩b(讀作”a交b”),即a∩b={_|_∈a,且_∈b}.

2、并集的定義:一般地,由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集。記作:a∪b(讀作”a并b”),即a∪b={_|_∈a,或_∈b}.

3、交集與并集的性質(zhì):a∩a=a,a∩φ=φ,a∩b=b∩a,a∪a=a,

a∪φ=a,a∪b=b∪a.

4、全集與補(bǔ)集

(1)補(bǔ)集:設(shè)s是一個(gè)集合,a是s的一個(gè)子集(即),由s中所有不屬于a的元素組成的集合,叫做s中子集a的補(bǔ)集(或余集)

記作:csa即csa={_|_?s且_?a}

s

csa

a

(2)全集:如果集合s含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集。通常用u來表示。

(3)性質(zhì):⑴cu(cua)=a⑵(cua)∩a=φ⑶(cua)∪a=u

二、函數(shù)的有關(guān)概念

1.函數(shù)的概念:設(shè)a、b是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合a中的任意一個(gè)數(shù)_,在集合b中都有確定的數(shù)f(_)和它對(duì)應(yīng),那么就稱f:a→b為從集合a到集合b的一個(gè)函數(shù).記作:y=f(_),_∈a.其中,_叫做自變量,_的取值范圍a叫做函數(shù)的定義域;與_的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(_)|_∈a}叫做函數(shù)的值域.

注意:2如果只給出解析式y(tǒng)=f(_),而沒有指明它的定義域,則函數(shù)的定義域即是指能使這個(gè)式子有意義的實(shí)數(shù)的集合;3函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

定義域補(bǔ)充

能使函數(shù)式有意義的實(shí)數(shù)_的集合稱為函數(shù)的定義域,求函數(shù)的定義域時(shí)列不等式組的主要依據(jù)是:(1)分式的分母不等于零;(2)偶次方根的被開方數(shù)不小于零;(3)對(duì)數(shù)式的真數(shù)必須大于零;(4)指數(shù)、對(duì)數(shù)式的底必須大于零且不等于1.(5)如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的.那么,它的定義域是使各部分都有意義的_的值組成的集合.(6)指數(shù)為零底不可以等于零(6)實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義.

(又注意:求出不等式組的解集即為函數(shù)的定義域。)

構(gòu)成函數(shù)的三要素:定義域、對(duì)應(yīng)關(guān)系和值域

再注意:(1)構(gòu)成函數(shù)三個(gè)要素是定義域、對(duì)應(yīng)關(guān)系和值域.由于值域是由定義域和對(duì)應(yīng)關(guān)系決定的,所以,如果兩個(gè)函數(shù)的定義域和對(duì)應(yīng)關(guān)系完全一致,即稱這兩個(gè)函數(shù)相等(或?yàn)橥缓瘮?shù))(2)兩個(gè)函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對(duì)應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。相同函數(shù)的判斷方法:①表達(dá)式相同;②定義域一致(兩點(diǎn)必須同時(shí)具備)

(見課本21頁相關(guān)例2)

值域補(bǔ)充

(1)、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采取什么方法求函數(shù)的值域都應(yīng)先考慮其定義域.(2).應(yīng)熟悉掌握一次函數(shù)、二次函數(shù)、指數(shù)、對(duì)數(shù)函數(shù)及各三角函數(shù)的值域,它是求解復(fù)雜函數(shù)值域的基礎(chǔ)。

3.函數(shù)圖象知識(shí)歸納

(1)定義:在平面直角坐標(biāo)系中,以函數(shù)y=f(_),(_∈a)中的_為橫坐標(biāo),函數(shù)值y為縱坐標(biāo)的點(diǎn)p(_,y)的集合c,叫做函數(shù)y=f(_),(_∈a)的圖象.

c上每一點(diǎn)的坐標(biāo)(_,y)均滿足函數(shù)關(guān)系y=f(_),反過來,以滿足y=f(_)的每一組有序?qū)崝?shù)對(duì)_、y為坐標(biāo)的點(diǎn)(_,y),均在c上.即記為c={p(_,y)|y=f(_),_∈a}

圖象c一般的是一條光滑的連續(xù)曲線(或直線),也可能是由與任意平行與y軸的直線最多只有一個(gè)交點(diǎn)的若干條曲線或離散點(diǎn)組成。

(2)畫法

a、描點(diǎn)法:根據(jù)函數(shù)解析式和定義域,求出_,y的一些對(duì)應(yīng)值并列表,以(_,y)為坐標(biāo)在坐標(biāo)系內(nèi)描出相應(yīng)的點(diǎn)p(_,y),最后用平滑的曲線將這些點(diǎn)連接起來.

b、圖象變換法(請(qǐng)參考必修4三角函數(shù))

常用變換方法有三種,即平移變換、伸縮變換和對(duì)稱變換

(3)作用:

1、直觀的看出函數(shù)的性質(zhì);2、利用數(shù)形結(jié)合的方法分析解題的思路。提高解題的速度。

發(fā)現(xiàn)解題中的錯(cuò)誤。

4.快去了解區(qū)間的概念

(1)區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;(2)無窮區(qū)間;(3)區(qū)間的數(shù)軸表示.

5.什么叫做映射

一般地,設(shè)a、b是兩個(gè)非空的集合,如果按某一個(gè)確定的對(duì)應(yīng)法則f,使對(duì)于集合a中的任意一個(gè)元素_,在集合b中都有確定的元素y與之對(duì)應(yīng),那么就稱對(duì)應(yīng)f:ab為從集合a到集合b的一個(gè)映射。記作“f:ab”

給定一個(gè)集合a到b的映射,如果a∈a,b∈b.且元素a和元素b對(duì)應(yīng),那么,我們把元素b叫做元素a的象,元素a叫做元素b的原象

說明:函數(shù)是一種特殊的映射,映射是一種特殊的對(duì)應(yīng),①集合a、b及對(duì)應(yīng)法則f是確定的;②對(duì)應(yīng)法則有“方向性”,即強(qiáng)調(diào)從集合a到集合b的對(duì)應(yīng),它與從b到a的對(duì)應(yīng)關(guān)系一般是不同的;③對(duì)于映射f:a→b來說,則應(yīng)滿足:(ⅰ)集合a中的每一個(gè)元素,在集合b中都有象,并且象是的;(ⅱ)集合a中不同的元素,在集合b中對(duì)應(yīng)的象可以是同一個(gè);(ⅲ)不要求集合b中的每一個(gè)元素在集合a中都有原象。

常用的函數(shù)表示法及各自的優(yōu)點(diǎn):

1函數(shù)圖象既可以是連續(xù)的曲線,也可以是直線、折線、離散的點(diǎn)等等,注意判斷一個(gè)圖形是否是函數(shù)圖象的依據(jù);2解析法:必須注明函數(shù)的定義域;3圖象法:描點(diǎn)法作圖要注意:確定函數(shù)的定義域;化簡函數(shù)的解析式;觀察函數(shù)的特征;4列表法:選取的自變量要有代表性,應(yīng)能反映定義域的特征.

注意?。航馕龇ǎ罕阌谒愠龊瘮?shù)值。列表法:便于查出函數(shù)值。圖象法:便于量出函數(shù)值

補(bǔ)充一:分段函數(shù)(參見課本p24-25)

在定義域的不同部分上有不同的解析表達(dá)式的函數(shù)。在不同的范圍里求函數(shù)值時(shí)必須把自變量代入相應(yīng)的表達(dá)式。分段函數(shù)的解析式不能寫成幾個(gè)不同的方程,而就寫函數(shù)值幾種不同的表達(dá)式并用一個(gè)左大括號(hào)括起來,并分別注明各部分的自變量的取值情況.(1)分段函數(shù)是一個(gè)函數(shù),不要把它誤認(rèn)為是幾個(gè)函數(shù);(2)分段函數(shù)的定義域是各段定義域的并集,值域是各段值域的并集.

補(bǔ)充二:復(fù)合函數(shù)

如果y=f(u),(u∈m),u=g(_),(_∈a),則y=f[g(_)]=f(_),(_∈a)稱為f、g的復(fù)合函數(shù)。

例如:y=2sin_y=2cos(_2+1)

7.函數(shù)單調(diào)性

(1).增函數(shù)

設(shè)函數(shù)y=f(_)的定義域?yàn)閕,如果對(duì)于定義域i內(nèi)的某個(gè)區(qū)間d內(nèi)的任意兩個(gè)自變量_1,_2,當(dāng)_1

如果對(duì)于區(qū)間d上的任意兩個(gè)自變量的值_1,_2,當(dāng)_1

注意:1函數(shù)的單調(diào)性是在定義域內(nèi)的某個(gè)區(qū)間上的性質(zhì),是函數(shù)的局部性質(zhì);

2必須是對(duì)于區(qū)間d內(nèi)的任意兩個(gè)自變量_1,_2;當(dāng)_1

(2)圖象的特點(diǎn)

如果函數(shù)y=f(_)在某個(gè)區(qū)間是增函數(shù)或減函數(shù),那么說函數(shù)y=f(_)在這一區(qū)間上具有(嚴(yán)格的)單調(diào)性,在單調(diào)區(qū)間上增函數(shù)的圖象從左到右是上升的,減函數(shù)的圖象從左到右是下降的.

(3).函數(shù)單調(diào)區(qū)間與單調(diào)性的判定方法

(a)定義法:

1任取_1,_2∈d,且_1

(b)圖象法(從圖象上看升降)_

(c)復(fù)合函數(shù)的單調(diào)性

復(fù)合函數(shù)f[g(_)]的單調(diào)性與構(gòu)成它的函數(shù)u=g(_),y=f(u)的單調(diào)性密切相關(guān),其規(guī)律如下:

函數(shù)

單調(diào)性

u=g(_)

y=f(u)

y=f[g(_)]

注意:1、函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.2、還記得我們?cè)谶x修里學(xué)習(xí)簡單易行的導(dǎo)數(shù)法判定單調(diào)性嗎?

8.函數(shù)的奇偶性

(1)偶函數(shù)

一般地,對(duì)于函數(shù)f(_)的定義域內(nèi)的任意一個(gè)_,都有f(-_)=f(_),那么f(_)就叫做偶函數(shù).

(2)奇函數(shù)

一般地,對(duì)于函數(shù)f(_)的定義域內(nèi)的任意一個(gè)_,都有f(-_)=—f(_),那么f(_)就叫做奇函數(shù).

注意:1函數(shù)是奇函數(shù)或是偶函數(shù)稱為函數(shù)的奇偶性,函數(shù)的奇偶性是函數(shù)的整體性質(zhì);函數(shù)可能沒有奇偶性,也可能既是奇函數(shù)又是偶函數(shù)。

2由函數(shù)的奇偶性定義可知,函數(shù)具有奇偶性的一個(gè)必要條件是,對(duì)于定義域內(nèi)的任意一個(gè)_,則-_也一定是定義域內(nèi)的一個(gè)自變量(即定義域關(guān)于原點(diǎn)對(duì)稱).

(3)具有奇偶性的函數(shù)的圖象的特征

偶函數(shù)的圖象關(guān)于y軸對(duì)稱;奇函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱.

總結(jié):利用定義判斷函數(shù)奇偶性的格式步驟:1首先確定函數(shù)的定義域,并判斷其定義域是否關(guān)于原點(diǎn)對(duì)稱;2確定f(-_)與f(_)的關(guān)系;3作出相應(yīng)結(jié)論:若f(-_)=f(_)或f(-_)-f(_)=0,則f(_)是偶函數(shù);若f(-_)=-f(_)或f(-_)+f(_)=0,則f(_)是奇函數(shù).

注意?。汉瘮?shù)定義域關(guān)于原點(diǎn)對(duì)稱是函數(shù)具有奇偶性的必要條件.首先看函數(shù)的定義域是否關(guān)于原點(diǎn)對(duì)稱,若不對(duì)稱則函數(shù)是非奇非偶函數(shù).若對(duì)稱,(1)再根據(jù)定義判定;(2)有時(shí)判定f(-_)=±f(_)比較困難,可考慮根據(jù)是否有f(-_)±f(_)=0或f(_)/f(-_)=±1來判定;(3)利用定理,或借助函數(shù)的圖象判定.

9、函數(shù)的解析表達(dá)式

(1).函數(shù)的解析式是函數(shù)的一種表示方法,要求兩個(gè)變量之間的函數(shù)關(guān)系時(shí),一是要求出它們之間的對(duì)應(yīng)法則,二是要求出函數(shù)的定義域.

(2).求函數(shù)的解析式的主要方法有:待定系數(shù)法、換元法、消參法等,如果已知函數(shù)解析式的構(gòu)造時(shí),可用待定系數(shù)法;已知復(fù)合函數(shù)f[g(_)]的表達(dá)式時(shí),可用換元法,這時(shí)要注意元的取值范圍;當(dāng)已知表達(dá)式較簡單時(shí),也可用湊配法;若已知抽象函數(shù)表達(dá)式,則常用解方程組消參的方法求出f(_)

10.函數(shù)(小)值(定義見課本p36頁)

1利用二次函數(shù)的性質(zhì)(配方法)求函數(shù)的(小)值2利用圖象求函數(shù)的(小)值3利用函數(shù)單調(diào)性的判斷函數(shù)的(小)值:如果函數(shù)y=f(_)在區(qū)間[a,b]上單調(diào)遞增,在區(qū)間[b,c]上單調(diào)遞減則函數(shù)y=f(_)在_=b處有值f(b);如果函數(shù)y=f(_)在區(qū)間[a,b]上單調(diào)遞減,在區(qū)間[b,c]上單調(diào)遞增則函數(shù)y=f(_)在_=b處有最小值f(b);

第二章基本初等函數(shù)

一、指數(shù)函數(shù)

(一)指數(shù)與指數(shù)冪的運(yùn)算

1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù).此時(shí),的次方根用符號(hào)表示.式子叫做根式(radical),這里叫做根指數(shù)(radicale_ponent),叫做被開方數(shù)(radicand).

當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù).此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

注意:當(dāng)是奇數(shù)時(shí),,當(dāng)是偶數(shù)時(shí),

2.分?jǐn)?shù)指數(shù)冪

正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

3.實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

(1)?;

(2);

(3).

(二)指數(shù)函數(shù)及其性質(zhì)

1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(e_ponential),其中_是自變量,函數(shù)的定義域?yàn)閞.

注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

2、指數(shù)函數(shù)的圖象和性質(zhì)

a>1

0

圖象特征

函數(shù)性質(zhì)

向_、y軸正負(fù)方向無限延伸

函數(shù)的定義域?yàn)閞

圖象關(guān)于原點(diǎn)和y軸不對(duì)稱

非奇非偶函數(shù)

函數(shù)圖象都在_軸上方

函數(shù)的值域?yàn)閞+

函數(shù)圖象都過定點(diǎn)(0,1)

自左向右看,

圖象逐漸上升

自左向右看,

圖象逐漸下降

增函數(shù)

減函數(shù)

在第一象限內(nèi)的圖象縱坐標(biāo)都大于1

在第一象限內(nèi)的圖象縱坐標(biāo)都小于1

在第二象限內(nèi)的圖象縱坐標(biāo)都小于1

在第二象限內(nèi)的圖象縱坐標(biāo)都大于1

圖象上升趨勢是越來越陡

圖象上升趨勢是越來越緩

函數(shù)值開始增長較慢,到了某一值后增長速度極快;

函數(shù)值開始減小極快,到了某一值后減小速度較慢;

注意:利用函數(shù)的單調(diào)性,結(jié)合圖象還可以看出:

(1)在[a,b]上,值域是或;

(2)若,則;取遍所有正數(shù)當(dāng)且僅當(dāng);

(3)對(duì)于指數(shù)函數(shù),總有;

(4)當(dāng)時(shí),若,則;

二、對(duì)數(shù)函數(shù)

(一)對(duì)數(shù)

1.對(duì)數(shù)的概念:一般地,如果,那么數(shù)叫做以為底的對(duì)數(shù),記作:(—底數(shù),—真數(shù),—對(duì)數(shù)式)

說明:1注意底數(shù)的限制,且;

2;

3注意對(duì)數(shù)的書寫格式.

兩個(gè)重要對(duì)數(shù):

1常用對(duì)數(shù):以10為底的對(duì)數(shù);

2自然對(duì)數(shù):以無理數(shù)為底的對(duì)數(shù)的對(duì)數(shù).

對(duì)數(shù)式與指數(shù)式的互化

對(duì)數(shù)式指數(shù)式

對(duì)數(shù)底數(shù)←→冪底數(shù)

對(duì)數(shù)←→指數(shù)

真數(shù)←→冪

(二)對(duì)數(shù)的運(yùn)算性質(zhì)

如果,且,,,那么:

1?+;

2-;

3.

注意:換底公式

(,且;,且;).

利用換底公式推導(dǎo)下面的結(jié)論(1);(2).

(二)對(duì)數(shù)函數(shù)

1、對(duì)數(shù)函數(shù)的概念:函數(shù),且叫做對(duì)數(shù)函數(shù),其中是自變量,函數(shù)的定義域是(0,+∞).

注意:1對(duì)數(shù)函數(shù)的定義與指數(shù)函數(shù)類似,都是形式定義,注意辨別。

如:,都不是對(duì)數(shù)函數(shù),而只能稱其為對(duì)數(shù)型函數(shù).

2對(duì)數(shù)函數(shù)對(duì)底數(shù)的限制:,且.

2、對(duì)數(shù)函數(shù)的性質(zhì):

a>1

0

圖象特征

函數(shù)性質(zhì)

函數(shù)圖象都在y軸右側(cè)

函數(shù)的定義域?yàn)?0,+∞)

圖象關(guān)于原點(diǎn)和y軸不對(duì)稱

非奇非偶函數(shù)

向y軸正負(fù)方向無限延伸

函數(shù)的值域?yàn)閞

函數(shù)圖象都過定點(diǎn)(1,0)

自左向右看,

圖象逐漸上升

自左向右看,

圖象逐漸下降

增函數(shù)

減函數(shù)

第一象限的圖象縱坐標(biāo)都大于0

第一象限的圖象縱坐標(biāo)都大于0

第二象限的圖象縱坐標(biāo)都小于0

第二象限的圖象縱坐標(biāo)都小于0

(三)冪函數(shù)

1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).

2、冪函數(shù)性質(zhì)歸納.

(1)所有的冪函數(shù)在(0,+∞)都有定義,并且圖象都過點(diǎn)(1,1);

(2)時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間上是增函數(shù).特別地,當(dāng)時(shí),冪函數(shù)的圖象下凸;當(dāng)時(shí),冪函數(shù)的圖象上凸;

(3)時(shí),冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當(dāng)從右邊趨向原點(diǎn)時(shí),圖象在軸右方無限地逼近軸正半軸,當(dāng)趨于時(shí),圖象在軸上方無限地逼近軸正半軸.

第三章函數(shù)的應(yīng)用

一、方程的根與函數(shù)的零點(diǎn)

1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:

方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

3、函數(shù)零點(diǎn)的求法:

求函數(shù)的零點(diǎn):

1(代數(shù)法)求方程的實(shí)數(shù)根;

2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

4、二次函數(shù)的零點(diǎn):

二次函數(shù).

1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).

【第10篇 高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

導(dǎo)語高一階段,是打基礎(chǔ)階段,是將來決戰(zhàn)高考取勝的關(guān)鍵階段,今早進(jìn)入角色,安排好自己學(xué)習(xí)和生活,會(huì)起到事半功倍的效果。以下是為你整理的《高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)》,學(xué)習(xí)路上,為你加油!

1.高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

1.函數(shù)知識(shí):基本初等函數(shù)性質(zhì)的考查,以導(dǎo)數(shù)知識(shí)為背景的函數(shù)問題;以向量知識(shí)為背景的函數(shù)問題;從具體函數(shù)的考查轉(zhuǎn)向抽象函數(shù)考查;從重結(jié)果考查轉(zhuǎn)向重過程考查;從熟悉情景的考查轉(zhuǎn)向新穎情景的考查。

2.向量知識(shí):向量具有數(shù)與形的雙重性,高考中向量試題的命題趨向:考查平面向量的基本概念和運(yùn)算律;考查平面向量的坐標(biāo)運(yùn)算;考查平面向量與幾何、三角、代數(shù)等學(xué)科的綜合性問題。

3.不等式知識(shí):突出工具性,淡化獨(dú)立性,突出解,是不等式命題的新取向。高考中不等式試題的命題趨向:基本的線性規(guī)劃問題為必考內(nèi)容,不等式的性質(zhì)與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)、二交函數(shù)等結(jié)合起來,考查不等式的性質(zhì)、最值、函數(shù)的單調(diào)性等;證明不等式的試題,多以函數(shù)、數(shù)列、解析幾何等知識(shí)為背景,在知識(shí)網(wǎng)絡(luò)的交匯處命題,綜合性強(qiáng),能力要求高;解不等式的試題,往往與公式、根式和參數(shù)的討論聯(lián)系在一起??疾閷W(xué)生的等價(jià)轉(zhuǎn)化能力和分類討論能力;以當(dāng)前經(jīng)濟(jì)、社會(huì)生產(chǎn)、生活為背景與不等式綜合的應(yīng)用題仍將是高考的熱點(diǎn),主要考查學(xué)生閱讀理解能力以及分析問題、解決問題的能力。

4.立體幾何知識(shí):2023年已經(jīng)變得簡單,2023年難度依然不大,基本的三視圖的考查難點(diǎn)不大,以及球與幾何體的組合體,涉及切,接的問題,線面垂直、平行位置關(guān)系的考查,已經(jīng)線面角,面面角和幾何體的體積計(jì)算等問題,都是重點(diǎn)考查內(nèi)容。

5.解析幾何知識(shí):小題主要涉及圓錐曲線方程,和直線與圓的位置關(guān)系,以及圓錐曲線幾何性質(zhì)的考查,極坐標(biāo)下的解析幾何知識(shí),解答題主要考查直線和圓的知識(shí),直線與圓錐曲線的知識(shí),涉及圓錐曲線方程,直線與圓錐曲線方程聯(lián)立,定點(diǎn),定值,范圍的考查,考試的難度降低。

6.導(dǎo)數(shù)知識(shí):導(dǎo)數(shù)的考查還是以理科19題,文科20題的形式給出,從常見函數(shù)入手,導(dǎo)數(shù)工具作用(切線和單調(diào)性)的考查,綜合性強(qiáng),能力要求高;往往與公式、導(dǎo)數(shù)往往與參數(shù)的討論聯(lián)系在一起,考查轉(zhuǎn)化與化歸能力,但今年的難點(diǎn)整體偏低。

2.高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

(一)指數(shù)與指數(shù)冪的運(yùn)算

1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈

當(dāng)是奇數(shù)時(shí),正數(shù)的次方根是一個(gè)正數(shù),負(fù)數(shù)的次方根是一個(gè)負(fù)數(shù)。此時(shí),的次方根用符號(hào)表示。式子叫做根式(radical),這里叫做根指數(shù)(radicale_ponent),叫做被開方數(shù)(radicand)。

當(dāng)是偶數(shù)時(shí),正數(shù)的次方根有兩個(gè),這兩個(gè)數(shù)互為相反數(shù)。此時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)—表示。正的次方根與負(fù)的次方根可以合并成±(>0)。由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

注意:當(dāng)是奇數(shù)時(shí),當(dāng)是偶數(shù)時(shí),

2、分?jǐn)?shù)指數(shù)冪

正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪。

3、實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì)

(二)指數(shù)函數(shù)及其性質(zhì)

1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(e_ponential),其中_是自變量,函數(shù)的定義域?yàn)閞。

注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1。

2、指數(shù)函數(shù)的圖象和性質(zhì)

3.高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

1.函數(shù)的奇偶性。

(1)若f(_)是偶函數(shù),那么f(_)=f(-_)。

(2)若f(_)是奇函數(shù),0在其定義域內(nèi),則f(0)=0(可用于求參數(shù))。

(3)判斷函數(shù)奇偶性可用定義的等價(jià)形式:f(_)±f(-_)=0或(f(_)≠0)。

(4)若所給函數(shù)的解析式較為復(fù)雜,應(yīng)先化簡,再判斷其奇偶性。

(5)奇函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相同的單調(diào)性;偶函數(shù)在對(duì)稱的單調(diào)區(qū)間內(nèi)有相反的單調(diào)性。

2.復(fù)合函數(shù)的有關(guān)問題。

(1)復(fù)合函數(shù)定義域求法:若已知的定義域?yàn)閇a,b],其復(fù)合函數(shù)f[g(_)]的定義域由不等式a≤g(_)≤b解出即可;若已知f[g(_)]的定義域?yàn)閇a,b],求f(_)的定義域,相當(dāng)于_∈[a,b]時(shí),求g(_)的值域(即f(_)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。

(2)復(fù)合函數(shù)的單調(diào)性由“同增異減”判定。

3.函數(shù)圖像(或方程曲線的對(duì)稱性)。

(1)證明函數(shù)圖像的對(duì)稱性,即證明圖像上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在圖像上。

(2)證明圖像c1與c2的對(duì)稱性,即證明c1上任意點(diǎn)關(guān)于對(duì)稱中心(對(duì)稱軸)的對(duì)稱點(diǎn)仍在c2上,反之亦然。

(3)曲線c1:f(_,y)=0,關(guān)于y=_+a(y=-_+a)的對(duì)稱曲線c2的方程為f(y-a,_+a)=0(或f(-y+a,-_+a)=0)。

(4)曲線c1:f(_,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線c2方程為:f(2a-_,2b-y)=0。

(5)若函數(shù)y=f(_)對(duì)_∈r時(shí),f(a+_)=f(a-_)恒成立,則y=f(_)圖像關(guān)于直線_=a對(duì)稱。

4.函數(shù)的周期性。

(1)y=f(_)對(duì)_∈r時(shí),f(_+a)=f(_-a)或f(_-2a)=f(_)(a>0)恒成立,則y=f(_)是周期為2a的周期函數(shù)。

(2)若y=f(_)是偶函數(shù),其圖像又關(guān)于直線_=a對(duì)稱,則f(_)是周期為2︱a︱的周期函數(shù)。

(3)若y=f(_)奇函數(shù),其圖像又關(guān)于直線_=a對(duì)稱,則f(_)是周期為4︱a︱的周期函數(shù)。

(4)若y=f(_)關(guān)于點(diǎn)(a,0),(b,0)對(duì)稱,則f(_)是周期為2的周期函數(shù)。

5.判斷對(duì)應(yīng)是否為映射時(shí),抓住兩點(diǎn)。

(1)a中元素必須都有象且。

(2)b中元素不一定都有原象,并且a中不同元素在b中可以有相同的象。

6.能熟練地用定義證明函數(shù)的單調(diào)性,求反函數(shù),判斷函數(shù)的奇偶性。

7.對(duì)于反函數(shù),應(yīng)掌握以下一些結(jié)論。

(1)定義域上的單調(diào)函數(shù)必有反函數(shù)。

(2)奇函數(shù)的反函數(shù)也是奇函數(shù)。

(3)定義域?yàn)榉菃卧丶呐己瘮?shù)不存在反函數(shù)。

(4)周期函數(shù)不存在反函數(shù)。

(5)互為反函數(shù)的兩個(gè)函數(shù)具有相同的單調(diào)性。

(6)y=f(_)與y=f-1(_)互為反函數(shù),設(shè)f(_)的定義域?yàn)閍,值域?yàn)閎,則有f[f--1(_)]=_(_∈b),f--1[f(_)]=_(_∈a)。

8.處理二次函數(shù)的問題勿忘數(shù)形結(jié)合。

二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對(duì)稱軸與所給區(qū)間的相對(duì)位置關(guān)系。

9.依據(jù)單調(diào)性,利用一次函數(shù)在區(qū)間上的保號(hào)性可解決求一類參數(shù)的范圍問題。

10.恒成立問題的處理方法。

(1)分離參數(shù)法。

(2)轉(zhuǎn)化為一元二次方程的根的分布列不等式(組)求解。

4.高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

1.“包含”關(guān)系—子集

注意:有兩種可能(1)a是b的一部分;(2)a與b是同一集合。

反之:集合a不包含于集合b,或集合b不包含集合a,記作ab或ba

2.“相等”關(guān)系:a=b(5≥5,且5≤5,則5=5)

實(shí)例:設(shè)a={_|_2-1=0}b={-1,1}“元素相同則兩集合相等”

即:①任何一個(gè)集合是它本身的子集。a(a

②真子集:如果a(b,且a(b那就說集合a是集合b的真子集,記作ab(或ba)

③如果a(b,b(c,那么a(c

④如果a(b同時(shí)b(a那么a=b

3.不含任何元素的集合叫做空集,記為φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

5.高一上冊(cè)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

空間幾何體表面積體積公式:

1、圓柱體:表面積:2πrr+2πrh體積:πr2h(r為圓柱體上下底圓半徑,h為圓柱體高)

2、圓錐體:表面積:πr2+πr[(h2+r2)的]體積:πr2h/3(r為圓錐體低圓半徑,h為其高,

3、a-邊長,s=6a2,v=a3

4、長方體a-長,b-寬,c-高s=2(ab+ac+bc)v=abc

5、棱柱s-h-高v=sh

6、棱錐s-h-高v=sh/3

7、s1和s2-上、下h-高v=h[s1+s2+(s1s2)^1/2]/3

8、s1-上底面積,s2-下底面積,s0-中h-高,v=h(s1+s2+4s0)/6

9、圓柱r-底半徑,h-高,c—底面周長s底—底面積,s側(cè)—,s表—表面積c=2πrs底=πr2,s側(cè)=ch,s表=ch+2s底,v=s底h=πr2h

10、空心圓柱r-外圓半徑,r-內(nèi)圓半徑h-高v=πh(r^2-r^2)

11、r-底半徑h-高v=πr^2h/3

12、r-上底半徑,r-下底半徑,h-高v=πh(r2+rr+r2)/313、球r-半徑d-直徑v=4/3πr^3=πd^3/6

14、球缺h-球缺高,r-球半徑,a-球缺底半徑v=πh(3a2+h2)/6=πh2(3r-h)/3

15、球臺(tái)r1和r2-球臺(tái)上、下底半徑h-高v=πh[3(r12+r22)+h2]/6

16、圓環(huán)體r-環(huán)體半徑d-環(huán)體直徑r-環(huán)體截面半徑d-環(huán)體截面直徑v=2π2rr2=π2dd2/4

17、桶狀體d-桶腹直徑d-桶底直徑h-桶高v=πh(2d2+d2)/12,(母線是圓弧形,圓心是桶的中心)v=πh(2d2+dd+3d2/4)/15(母線是拋物線形)

【第11篇 高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

一、直線與方程

(1)直線的傾斜角

定義:_軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與_軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

(2)直線的斜率

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即 。斜率反映直線與軸的傾斜程度。當(dāng) 時(shí), 。當(dāng) 時(shí), ;當(dāng) 時(shí), 不存在。

②過兩點(diǎn)的直線的斜率公式:

注意下面四點(diǎn):(1)當(dāng) 時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與p1、p2的順序無關(guān);

(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

(3)直線方程

①點(diǎn)斜式: 直線斜率k,且過點(diǎn)

注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示.但因l上每一點(diǎn)的橫坐標(biāo)都等于_1,所以它的方程是_=_1。

②斜截式: ,直線斜率為k,直線在y軸上的截距為b

③兩點(diǎn)式: ( )直線兩點(diǎn) ,

④截矩式: 其中直線 與 軸交于點(diǎn) ,與 軸交于點(diǎn) ,即 與 軸、 軸的截距分別為 。

⑤一般式: (a,b不全為0)

注意:○1各式的適用范圍

○2特殊的方程如:平行于_軸的直線: (b為常數(shù)); 平行于y軸的直線: (a為常數(shù));

(4)直線系方程:即具有某一共同性質(zhì)的直線

(一)平行直線系

平行于已知直線 ( 是不全為0的常數(shù))的直線系: (c為常數(shù))

(二)過定點(diǎn)的直線系

(?)斜率為k的直線系: ,直線過定點(diǎn) ;

(?)過兩條直線 , 的交點(diǎn)的直線系方程為 ( 為參數(shù)),其中直線 不在直線系中。

(5)兩直線平行與垂直

當(dāng) , 時(shí), ;

注意:利用斜率判斷直線的平行與垂直時(shí),要注意斜率的存在與否。

(6)兩條直線的交點(diǎn)

相交

交點(diǎn)坐標(biāo)即方程組的一組解。方程組無解 ; 方程組有無數(shù)解 與 重合

(7)兩點(diǎn)間距離公式:設(shè) 是平面直角坐標(biāo)系中的兩個(gè)點(diǎn),則

(8)點(diǎn)到直線距離公式:一點(diǎn) 到直線 的距離

(9)兩平行直線距離公式:在任一直線上任取一點(diǎn),再轉(zhuǎn)化為點(diǎn)到直線的距離進(jìn)行求解。

二、圓的方程

1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長為圓的半徑。

2、圓的方程

(1)標(biāo)準(zhǔn)方程 ,圓心 ,半徑為r;

(2)一般方程

當(dāng) 時(shí),方程表示圓,此時(shí)圓心為, 半徑為

當(dāng) 時(shí),表示一個(gè)點(diǎn); 當(dāng) 時(shí),方程不表示任何圖形。

(3)求圓方程的方法:

一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,

若利用圓的標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出d,e,f;

另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點(diǎn),以此來確定圓心的位置。

3、直線與圓的位置關(guān)系:

直線與圓的位置關(guān)系有相離,相切,相交三種情況,基本上由下列兩種方法判斷:

(1)設(shè)直線 ,圓 圓心 到l的距離為 則有

(2)設(shè)直線 ,圓 ,先將方程聯(lián)立消元,得到一個(gè)一元二次方程之后,令其中的判別式為 ,則有 ; ;

注:如圓心的位置在原點(diǎn),可使用公式 去解直線與圓相切的問題,其中 表示切點(diǎn)坐標(biāo),r表示半徑。

(3)過圓上一點(diǎn)的切線方程:

①圓_2+y2=r2,圓上一點(diǎn)為(_0,y0),則過此點(diǎn)的切線方程為 (課本命題).

②圓(_-a)2+(y-b)2=r2,圓上一點(diǎn)為(_0,y0),則過此點(diǎn)的切線方程為(_0-a)(_-a)+(y0-b)(y-b)= r2 (課本命題的推廣).

4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

設(shè)圓 ,

兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

當(dāng) 時(shí)兩圓外離,此時(shí)有公切線四條;

當(dāng) 時(shí)兩圓外切,連心線過切點(diǎn),有外公切線兩條,內(nèi)公切線一條;

當(dāng) 時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

當(dāng) 時(shí),兩圓內(nèi)切,連心線經(jīng)過切點(diǎn),只有一條公切線;

當(dāng) 時(shí),兩圓內(nèi)含; 當(dāng) 時(shí),為同心圓。

三、立體幾何初步

1、柱、錐、臺(tái)、球的結(jié)構(gòu)特征

(1) 棱柱:

定義:有兩個(gè)面互相平行,其余各面都是四邊形,且每相鄰兩個(gè)四邊形的公共邊都互相平行,由這些面所圍成的幾何體。

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱柱、四棱柱、五棱柱等。

表示:用各頂點(diǎn)字母,如五棱柱 或用對(duì)角線的端點(diǎn)字母,如五棱柱

幾何特征:兩底面是對(duì)應(yīng)邊平行的全等多邊形;側(cè)面、對(duì)角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形。

(2)棱錐

定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,由這些面所圍成的幾何體

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱錐、四棱錐、五棱錐等

表示:用各頂點(diǎn)字母,如五棱錐

幾何特征:側(cè)面、對(duì)角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點(diǎn)到截面距離與高的比的平方。

(3)棱臺(tái):

定義:用一個(gè)平行于棱錐底面的平面去截棱錐,截面和底面之間的部分

分類:以底面多邊形的邊數(shù)作為分類的標(biāo)準(zhǔn)分為三棱態(tài)、四棱臺(tái)、五棱臺(tái)等

表示:用各頂點(diǎn)字母,如五棱臺(tái)

幾何特征:①上下底面是相似的平行多邊形 ②側(cè)面是梯形 ③側(cè)棱交于原棱錐的頂點(diǎn)

(4)圓柱:

定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成的曲面所圍成的幾何體

幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個(gè)矩形。

(5)圓錐:

定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成的曲面所圍成的幾何體

幾何特征:①底面是一個(gè)圓;②母線交于圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)扇形。

(6)圓臺(tái):

定義:用一個(gè)平行于圓錐底面的平面去截圓錐,截面和底面之間的部分

幾何特征:①上下底面是兩個(gè)圓;②側(cè)面母線交于原圓錐的頂點(diǎn);③側(cè)面展開圖是一個(gè)弓形。

(7)球體:

定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

幾何特征:①球的截面是圓;②球面上任意一點(diǎn)到球心的距離等于半徑。

2、空間幾何體的三視圖

定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、俯視圖(從上向下)

注:正視圖反映了物體上下、左右的位置關(guān)系,即反映了物體的高度和長度;

俯視圖反映了物體左右、前后的位置關(guān)系,即反映了物體的長度和寬度;

側(cè)視圖反映了物體上下、前后的位置關(guān)系,即反映了物體的高度和寬度。

3、空間幾何體的直觀圖——斜二測畫法

斜二測畫法特點(diǎn):①原來與_軸平行的線段仍然與_平行且長度不變;

②原來與y軸平行的線段仍然與y平行,長度為原來的一半。

4、柱體、錐體、臺(tái)體的表面積與體積

(1)幾何體的表面積為幾何體各個(gè)面的面積的和。

(2)特殊幾何體表面積公式(c為底面周長,h為高, 為斜高,l為母線)

(3)柱體、錐體、臺(tái)體的體積公式

(4)球體的表面積和體積公式:v = ; s =

5、空間點(diǎn)、直線、平面的位置關(guān)系

(1)平面

① 平面的概念: a.描述性說明; b.平面是無限伸展的;

② 平面的表示:通常用希臘字母α、β、γ表示,如平面α(通常寫在一個(gè)銳角內(nèi));也可以用兩個(gè)相對(duì)頂點(diǎn)的字母來表示,如平面bc。

③ 點(diǎn)與平面的關(guān)系:點(diǎn)a在平面 內(nèi),記作 ;點(diǎn) 不在平面 內(nèi),記作

點(diǎn)與直線的關(guān)系:點(diǎn)a的直線l上,記作:a∈l; 點(diǎn)a在直線l外,記作a l;

直線與平面的關(guān)系:直線l在平面α內(nèi),記作l α;直線l不在平面α內(nèi),記作l α。

(2)公理1:如果一條直線的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線是所有的點(diǎn)都在這個(gè)平面內(nèi)。(即直線在平面內(nèi),或者平面經(jīng)過直線)

應(yīng)用:檢驗(yàn)桌面是否平; 判斷直線是否在平面內(nèi) 。 用符號(hào)語言表示公理1:

(3)公理2:經(jīng)過不在同一條直線上的三點(diǎn),有且只有一個(gè)平面。

推論:一直線和直線外一點(diǎn)確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

公理2及其推論作用:①它是空間內(nèi)確定平面的依據(jù) ②它是證明平面重合的依據(jù)

(4)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過該點(diǎn)的公共直線

符號(hào):平面α和β相交,交線是a,記作α∩β=a。 符號(hào)語言:

公理3的作用:①它是判定兩個(gè)平面相交的方法。

②它說明兩個(gè)平面的交線與兩個(gè)平面公共點(diǎn)之間的關(guān)系:交線必過公共點(diǎn)。

③它可以判斷點(diǎn)在直線上,即證若干個(gè)點(diǎn)共線的重要依據(jù)。

(5)公理4:平行于同一條直線的兩條直線互相平行

(6)空間直線與直線之間的位置關(guān)系

① 異面直線定義:不同在任何一個(gè)平面內(nèi)的兩條直線

② 異面直線性質(zhì):既不平行,又不相交。

③ 異面直線判定:過平面外一點(diǎn)與平面內(nèi)一點(diǎn)的直線與平面內(nèi)不過該店的直線是異面直線

④ 異面直線所成角:直線a、b是異面直線,經(jīng)過空間任意一點(diǎn)o,分別引直線a’∥a,b’∥b,則把直線a’和b’所成的銳角(或直角)叫做異面直線a和b所成的角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

說明:(1)判定空間直線是異面直線方法:①根據(jù)異面直線的定義;②異面直線的判定定理

(2)在異面直線所成角定義中,空間一點(diǎn)o是任取的,而和點(diǎn)o的位置無關(guān)。

(3)求異面直線所成角步驟:

a、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時(shí)平移到某個(gè)特殊的位置,頂點(diǎn)選在特殊的位置上。

b、證明作出的'角即為所求角

c、利用三角形來求角

(7)等角定理:如果一個(gè)角的兩邊和另一個(gè)角的兩邊分別平行,那么這兩角相等或互補(bǔ)。

(8)空間直線與平面之間的位置關(guān)系

直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn).

三種位置關(guān)系的符號(hào)表示:a α a∩α=a a∥α

(9)平面與平面之間的位置關(guān)系:平行——沒有公共點(diǎn);α∥β 相交——有一條公共直線。α∩β=b

6、空間中的平行問題

(1)直線與平面平行的判定及其性質(zhì)

線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。 線線平行 線面平行

線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。

線面平行 線線平行

(2)平面與平面平行的判定及其性質(zhì)

兩個(gè)平面平行的判定定理(1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行(線面平行→面面平行),

(2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。(線線平行→面面平行),

(3)垂直于同一條直線的兩個(gè)平面平行,

兩個(gè)平面平行的性質(zhì)定理(1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)

(2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)

7、空間中的垂直問題

(1)線線、面面、線面垂直的定義

①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

②線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說這條直線和這個(gè)平面垂直。

③平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個(gè)平面垂直。

(2)垂直關(guān)系的判定和性質(zhì)定理

①線面垂直判定定理和性質(zhì)定理

判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。

性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。

②面面垂直的判定定理和性質(zhì)定理

判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。

性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。

8、空間角問題

(1)直線與直線所成的角

①兩平行直線所成的角:規(guī)定為 。

②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

③兩條異面直線所成的角:過空間任意一點(diǎn)o,分別作與兩條異面直線a,b平行的直線 ,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

(2)直線和平面所成的角

①平面的平行線與平面所成的角:規(guī)定為 。

②平面的垂線與平面所成的角:規(guī)定為 。

③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。

求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。

在“作角”時(shí)依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點(diǎn)到面的垂線,

解題時(shí),注意挖掘題設(shè)中兩個(gè)信息:(1)斜線上一點(diǎn)到面的垂線;(2)過斜線上的一點(diǎn)或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

(3)二面角和二面角的平面角

①二面角的定義:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個(gè)半平面叫做二面角的面。

②二面角的平面角:以二面角的棱上任意一點(diǎn)為頂點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

③直二面角:平面角是直角的二面角叫直二面角。兩相交平面如果所組成的二面角是直二面角,那么這兩個(gè)平面垂直;反過來,如果兩個(gè)平面垂直,那么所成的二面角為直二面角

④求二面角的方法

定義法:在棱上選擇有關(guān)點(diǎn),過這個(gè)點(diǎn)分別在兩個(gè)面內(nèi)作垂直于棱的射線得到平面角

垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過兩垂線作平面與兩個(gè)面的交線所成的角為二面角的平面角

9、空間直角坐標(biāo)系

(1)定義:如圖, 是單位正方體.以a為原點(diǎn),分別以od,o ,ob的方向?yàn)檎较颍?/p>

建立三條數(shù)軸 。這時(shí)建立了一個(gè)空間直角坐標(biāo)系o_yz.

1)o叫做坐標(biāo)原點(diǎn) 2)_ 軸,y軸,z軸叫做坐標(biāo)軸. 3)過每兩個(gè)坐標(biāo)軸的平面叫做坐標(biāo)面。

(2)右手表示法: 令右手大拇指、食指和中指相互垂直時(shí),可能形成的位置。大拇指指向?yàn)開軸正方向,食指指向?yàn)閥軸正向,中指指向則為z軸正向,這樣也可以決定三軸間的相位置。

(3)任意點(diǎn)坐標(biāo)表示:空間一點(diǎn)m的坐標(biāo)可以用有序?qū)崝?shù)組 來表示,有序?qū)崝?shù)組 叫做點(diǎn)m在此空間直角坐標(biāo)系中的坐標(biāo),記作 (_叫做點(diǎn)m的橫坐標(biāo),y叫做點(diǎn)m的縱坐標(biāo),z叫做點(diǎn)m的豎坐標(biāo))

總結(jié)2013年已經(jīng)到來,小編在此特意收集了有關(guān)此頻道的文章供讀者閱讀。

更多頻道:

《3.1 隨機(jī)事件的概率(2)》測試題

一、選擇題

1.若事件a發(fā)生的概率為p,則p的取值范圍是( ).

a. b. c. d.

考查目的:考查概率的重要性質(zhì),即任何事件的概率取值范圍是0≤p(a)≤1.

答案:d.

解析:由于事件的頻數(shù)總是小于或等于試驗(yàn)的次數(shù),所以頻率在0~1之間,從而任何事件的概率在0~1之間,在每次實(shí)驗(yàn)中,必然事件一定發(fā)生,因此它的頻率是1,從而必然事件的概率為1. 在每次實(shí)驗(yàn)中,不可能事件一定不發(fā)生,因此它的頻率是0.

2.從某班學(xué)生中任意找出一人,如果該同學(xué)的身高小于160cm的概率為0.2,該同學(xué)的身高在[160,175]的概率為0.5,那么該同學(xué)的身高超過175cm的概率為( ).

a.0.2 b.0.3 c.0.7 d.0.8

考查目的:考查事件的并(或稱事件的和)、對(duì)立事件的概念及概率加法公式的理解和掌握情況.

答案:b.

解析:因?yàn)楸厝皇录l(fā)生的概率是1,所以該同學(xué)的身高超過175cm的概率為1-0.2-0.5=0.3.

3.從裝有2個(gè)紅球和2個(gè)白球的口袋內(nèi)任取2個(gè)球,那么互斥而不對(duì)立的兩個(gè)事件是( ).

a.至少有1個(gè)白球,都是紅球 b.至少有1個(gè)白球,至多有1個(gè)紅球

c.恰有1個(gè)白球,恰有2個(gè)白球 d.至多有1個(gè)白球,都是紅球

考查目的:考查互斥事件、對(duì)立事件的概念、意義及其區(qū)別和聯(lián)系.

答案:c.

解析:互斥事件:在同一試驗(yàn)中不可能同時(shí)發(fā)生的兩個(gè)事件叫互斥事件,而對(duì)立事件是建立在互斥事件的基礎(chǔ)上,兩個(gè)事件中一個(gè)不發(fā)生,另一個(gè)必發(fā)生. 用a,b,c,d分別表示2個(gè)紅球,2個(gè)黑球,任取2球,共有6種可能的結(jié)果,分別是:ab;ac;ad;bc;bd;cd.選擇項(xiàng) c中恰有1個(gè)白球,包括ac;ad;bc;bd,恰有2個(gè)白球,包括cd,故恰有1個(gè)白球,恰有2個(gè)白球互斥而不對(duì)立.

二、填空題

4.從一副混合后的撲克牌(52張,去掉大、小王)中隨機(jī)抽取1張,事件a為“抽得紅桃k”,事件b為“抽得為黑桃”,則概率p(a∪b)的值是 .(結(jié)果用最簡分?jǐn)?shù)表示)

考查目的:考查事件的并(或稱事件的和)的概率公式.

答案:.

解析:一副撲克中有1張紅桃k,13張黑桃,事件a與事件b為互斥事件,

5.第16屆亞運(yùn)會(huì)于2010年11月12日在中國廣州舉行,運(yùn)動(dòng)會(huì)期間有來自a大學(xué)2名大學(xué)生和b大學(xué)4名大學(xué)生共計(jì)6名志愿者,現(xiàn)從這6名志愿者中隨機(jī)抽取2人到體操比賽場館服務(wù),至少有一名a大學(xué)志愿者的概率是 .

考查目的:考查交事件(積事件)與事件的并(或稱事件的和)的概率公式.

答案:.

解析:(或).

6.甲、乙兩隊(duì)進(jìn)行足球比賽,若兩隊(duì)?wèi)?zhàn)平的概率是,乙隊(duì)勝的概率是,則甲隊(duì)勝的概率是 .

考查目的:考查互為對(duì)立事件的概念及其中一個(gè)事件發(fā)生的概率公式.

答案:.

解析:“甲獲勝”是“兩隊(duì)?wèi)?zhàn)平或乙獲勝”的對(duì)立事件,∴甲隊(duì)勝的概率是.

三、解答題

7.某醫(yī)院派出醫(yī)生下鄉(xiāng)醫(yī)療,一天內(nèi)派出醫(yī)生人數(shù)及其概率如下:

醫(yī)生人數(shù)

1

2

3

4

5人及以上

概 率

0.1

0.16

0.3

0.2

0.2

0.04

求:

⑴派出醫(yī)生至多2人的概率;

⑵派出醫(yī)生至少2人的概率.

考查目的:事件的并(或稱事件的和)的概率公式的應(yīng)用.

答案:⑴0.56;⑵0.74.

解析:記事件a為“不派出醫(yī)生”,事件b為“派出1名醫(yī)生”,事件c為“派出2名醫(yī)生”,事件d為“派出3名醫(yī)生”,事件e為“派出4名醫(yī)生”,事件f為“派出不少于5名醫(yī)生”,則事件a、b、c、d、e、f彼此互斥,且p(a)=0.1,p(b)=0.16,p(c)=0.3,p(d)=0.2,p(e)=0.2,p(f)=0.04.

⑴“派出醫(yī)生至多2人”的概率為:p(a+b+c)=p(a)+p(b)+p(c)=0.1+0.16+0.3=0.56;

⑵“派出醫(yī)生至少2人”的概率為:p(c+d+e+f)=p(c)+p(d)+p(e)+p(f)=0.3+0.2+0.2+0.04=0.74.

另解:1-p(a+b)=1-0.1-0.16=0.74.

8.袋中有12個(gè)小球,分別為紅球、黑球、黃球、綠球,從中任取一球,得到紅球的概率是,得到黑球或黃球的概率是,得到黃球或綠球的概率也是,試求得到黑球、得到黃球、得到綠球的概率各是多少?

考查目的:考查事件的并(或稱事件的和)的概率公式與方程組的簡單應(yīng)用.

答案:,,.

解析:設(shè)事件a、b、c、d分別表示“任取一球,得到紅球、任取一球,得到黑球、任取一球,得到黃球、任取一球,得到綠球”,則由已知得,,

,,解得p(b)=,p(c)=,p(d)=,故得到黑球、黃球、綠球的概率分別是,,.

高考數(shù)學(xué)備考:第一輪復(fù)習(xí)總體方案

摘要小編為大家整理了第一輪復(fù)習(xí)總體方案,希望高三的同學(xué)們好好復(fù)習(xí),備戰(zhàn)高考,成功是屬于你們的。

一、全力夯實(shí)雙基,保證駕輕就熟

目前高考數(shù)學(xué)試卷,基礎(chǔ)知識(shí)和基本方法的考查占80%左右的份量,即使是創(chuàng)新題或能力題也是建立在雙基之上,只有腳踏實(shí)地、一絲不茍地鞏固雙基,才能占領(lǐng)高考陣地。

教材是,把握了教材,也就切中了要害。不僅要深刻理解教材中的知識(shí),更要關(guān)注教材中解決問題的思想方法,還要全面把握知識(shí)體系,保證:⑴不 掌握不放過。對(duì)照《考試說明》,確定考試范圍,認(rèn)真閱讀和理解教材中相關(guān)內(nèi)容,包括每個(gè)概念、每個(gè)例題、每個(gè)注釋、每個(gè)圖形,準(zhǔn)確理解和記憶知識(shí)點(diǎn),不留 空白和隱患。⑵胸?zé)o全書不放過,在掌握知識(shí)點(diǎn)的基礎(chǔ)上,根據(jù)知識(shí)的內(nèi)在聯(lián)系,構(gòu)建知識(shí)網(wǎng)絡(luò),把書學(xué)得“由厚變薄”。不防從課本的章節(jié)目錄入手,進(jìn)行串聯(lián), 形成體系。⑶有疑難不放過。為鞏固復(fù)習(xí)效果,發(fā)展思維能力,適量的練習(xí)是必要的,練習(xí)中遇到困難也在所難免,必須找到問題的癥結(jié)在那里,對(duì)照教材,徹底掃 除障礙。回歸教材、吃透課本,千萬不能眼高手低喲。

二、重視錯(cuò)題病例,實(shí)時(shí)忘羊補(bǔ)牢

錯(cuò)題病例也是財(cái)富,它有時(shí)暴露我們的知識(shí)缺陷,有時(shí)暴露我們的思維不足,有時(shí)暴露我們方法的不當(dāng),毛病暴露出來了,也就有治療的方向,提供了糾錯(cuò)的機(jī)會(huì)。

由于題海戰(zhàn)術(shù)的影響,許多同學(xué),拼命做題,期望以多取勝,但常常事與愿違,不見提高,走訪了一些同學(xué),普遍覺得困惑他們的是有些錯(cuò)誤很頑固,訂正過了,評(píng)講過了,還是重蹈覆轍。原因是沒有重視錯(cuò)誤,或沒有診斷出錯(cuò)因,沒有收到糾錯(cuò)的效果。

建議:建立錯(cuò)題集,特別是那些概念理解不深刻、知識(shí)記憶失誤、思維不夠嚴(yán)謹(jǐn)、方法使用不當(dāng)?shù)鹊湫湾e(cuò)誤收集成冊(cè),并加以評(píng)注,指出錯(cuò)誤原因,經(jīng)常 翻閱,常常提醒,警鐘長鳴,以絕后患。注意收集錯(cuò)題也有個(gè)度的問題,對(duì)于那些一時(shí)粗心的偶然失誤,或一時(shí)情緒波動(dòng)而產(chǎn)生的失誤應(yīng)另作他論。

三、加強(qiáng)毅力訓(xùn)練,做到持之以恒

毅力比熱情更重要。進(jìn)入高三,同學(xué)們都雄心勃勃。但由于各種因素的影響,有的同學(xué)能夠堅(jiān)持不懈,平步青云。有的同學(xué)松弛下來,形成知識(shí)或方法上的梗阻。影響情緒和信心。阻礙前進(jìn)的步伐。訓(xùn)練毅力刻不容緩!

計(jì)劃明確,并堅(jiān)決執(zhí)行,不尋找借口,做到“今日事今日畢”,決不拖到明天做今天的事,練習(xí)也要限時(shí)完成,一個(gè)小時(shí)完成的,決不拖成一個(gè)半小時(shí)完 成,否則將影響后續(xù)的學(xué)習(xí)和生活。任何一門學(xué)科,只要三天不接觸,拿到題目時(shí),將會(huì)覺得入手不順,思維不暢,效率不高且易出錯(cuò),若5天不訓(xùn)練將會(huì)不進(jìn)而 退。所以,建議各個(gè)學(xué)科每天都要有所鞏固,根據(jù)具體情況哪怕份量輕些也行。遇到困難應(yīng)及時(shí)解決,不能積累,否則會(huì)打擊信心,喪失斗志。

總結(jié)第一輪復(fù)習(xí)總體方案就為大家整理到這里了,希望大家在高三期間好好復(fù)習(xí),為高考做準(zhǔn)備,大家加油。

瀏覽了本文的同學(xué)也瀏覽了:

高考數(shù)學(xué)備考:不等式數(shù)列口訣

摘要高三的同學(xué)們正在第一輪的復(fù)習(xí)階段,小編為同學(xué)們整理了不等式數(shù)列口訣,供大家參考,大家要好好復(fù)習(xí)哦。

數(shù)列

等差等比兩數(shù)列,通項(xiàng)公式n項(xiàng)和。兩個(gè)有限求極限,四則運(yùn)算順序換。

數(shù)列問題多變幻,方程化歸整體算。數(shù)列求和比較難,錯(cuò)位相消巧轉(zhuǎn)換,

取長補(bǔ)短高斯法,裂項(xiàng)求和公式算。歸納思想非常好,編個(gè)程序好思考:

一算二看三聯(lián)想,猜測證明不可少。還有數(shù)學(xué)歸納法,證明步驟程序化:

首先驗(yàn)證再假定,從k向著k加1,推論過程須詳盡,歸納原理來肯定。

不等式

解不等式的途徑,利用函數(shù)的性質(zhì)。對(duì)指無理不等式,化為有理不等式。

高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。

證不等式的方法,實(shí)數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭高下。

直接困難分析好,思路清晰綜合法。非負(fù)常用基本式,正面難則反證法。

還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來幫助,畫圖建模構(gòu)造法。

總結(jié)不等式數(shù)列口訣就為大家整理到這里了,希望大家在高三期間好好復(fù)習(xí),為高考做準(zhǔn)備,大家加油。

瀏覽了本文的同學(xué)也瀏覽了:

高中數(shù)學(xué)學(xué)習(xí)方法之良好的學(xué)習(xí)習(xí)慣

高中數(shù)學(xué)學(xué)習(xí)方法之良好的學(xué)習(xí)習(xí)慣

良好的學(xué)習(xí)習(xí)慣包括制定學(xué)習(xí)計(jì)劃、課前預(yù)習(xí)、專心上課、及時(shí)復(fù)習(xí)、獨(dú)立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個(gè)方面。

(1)制定計(jì)劃明確學(xué)習(xí)目的。合理的學(xué)習(xí)計(jì)劃是推動(dòng)我們主動(dòng)學(xué)習(xí)和克服困難的內(nèi)在動(dòng)力。計(jì)劃先由老師指導(dǎo)督促,再一定要由自己切實(shí)完成,既有長遠(yuǎn)打算,又有短期安排,執(zhí)行過程中嚴(yán)格要求自己,磨煉學(xué)習(xí)意志。

(2)課前預(yù)習(xí)是取得較好學(xué)習(xí)效果的基礎(chǔ)。課前預(yù)習(xí)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)的主動(dòng)權(quán)。預(yù)習(xí)不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點(diǎn),突破難點(diǎn),盡可能把問題解決在課堂上。

(3)上課是理解和掌握基本知識(shí)、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。“學(xué)然后知不足”,上課更能專心聽重點(diǎn)難點(diǎn),把老師補(bǔ)充的內(nèi)容記錄下來,而不是全抄全錄,顧此失彼。

(4)及時(shí)復(fù)習(xí)是提高效率學(xué)習(xí)的重要一環(huán)。通過反復(fù)閱讀教材,多方面查閱有關(guān)資料,強(qiáng)化對(duì)基本概念知識(shí)體系的理解與記憶,將所學(xué)的新知識(shí)與有關(guān)舊知識(shí)聯(lián)系起來,進(jìn)行分析比效,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記本上,使對(duì)所學(xué)的新知識(shí)由“懂”到“會(huì)”。

(5)獨(dú)立作業(yè)是通過自己的獨(dú)立思考,靈活地分析問題、解決問題,進(jìn)一步加深對(duì)所學(xué)新知識(shí)的理解和對(duì)新技能的掌握過程。這一過程也是對(duì)我們意志毅力的考驗(yàn),通過運(yùn)用使我們對(duì)所學(xué)知識(shí)由“會(huì)”到“熟”。

(6)解決疑難是指對(duì)獨(dú)立完成作業(yè)過程中暴露出來對(duì)知識(shí)理解的錯(cuò)誤,或由于思維受阻遺漏解答,通過點(diǎn)撥使思路暢通,補(bǔ)遺解答的過程。解決疑難一定要有鍥而不舍的精神。做錯(cuò)的作業(yè)再做一遍。對(duì)錯(cuò)誤的地方?jīng)]弄清楚要反復(fù)思考。實(shí)在解決不了的要請(qǐng)教老師和同學(xué),并要經(jīng)常把易錯(cuò)的地方拿來復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把求老師問同學(xué)獲得的東西消化變成自己的知識(shí),長期堅(jiān)持使對(duì)所學(xué)知識(shí)由“熟”到“活”。

(7)系統(tǒng)小結(jié)是通過積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識(shí)和發(fā)展認(rèn)識(shí)能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,揭示知識(shí)間的內(nèi)在聯(lián)系,以達(dá)到對(duì)所學(xué)知識(shí)融會(huì)貫通的目的。經(jīng)常進(jìn)行多層次小結(jié),能對(duì)所學(xué)知識(shí)由“活”到“悟”。

(8)課外學(xué)習(xí)包括閱讀課外書籍與報(bào)刊,參加學(xué)科競賽與講座,走訪高年級(jí)同學(xué)或老師交流學(xué)習(xí)心得等。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),它不僅能豐富同學(xué)們的文化科學(xué)知識(shí),加深和鞏固課內(nèi)所學(xué)的知識(shí),而且能夠滿足和發(fā)展我們的興趣愛好,培養(yǎng)獨(dú)立學(xué)習(xí)和工作的能力,激發(fā)求知欲與學(xué)習(xí)熱情。

高中理科數(shù)學(xué)主要失分細(xì)節(jié)

對(duì)于理科學(xué)生而言,數(shù)學(xué)一般是強(qiáng)項(xiàng),但越是強(qiáng)項(xiàng)的科目也就越容易大意。那么,根據(jù)理科生的實(shí)際特點(diǎn)

,高考數(shù)學(xué)應(yīng)該怎復(fù)習(xí)呢?下面來聽一聽老師的建議吧!

無論一輪復(fù)習(xí)還是二輪復(fù)習(xí)都應(yīng)該將重點(diǎn)放在基礎(chǔ)知識(shí)、基本技能的訓(xùn)練上,尤其是計(jì)算能力的培養(yǎng)。

回想這幾年的高考情況,以下是考生容易失分的三個(gè)方面。

第二,審題不仔細(xì)。不少考生審題時(shí),只看到了部分條件,例如f(_)≤0,有的學(xué)生就會(huì)當(dāng)成f(_)<0,這

樣一來,全部錯(cuò)誤。從往年的情況看,有的考生因?yàn)榇中膩G掉了10多分。

第一,步驟不完整。從這幾年看,高考答案的步驟非常詳細(xì),而有些考生雖然會(huì)做,最后的結(jié)果也對(duì),但

是缺少中間步驟,這樣很容易失分。

第三,答題時(shí)間安排不合理。數(shù)學(xué)選擇題做題時(shí)間一般是2分鐘,曾有一位女生,學(xué)習(xí)成績非常好,考試

中遇到一道不會(huì)做的題,耽誤了15分鐘,題是做出來了,可當(dāng)她看到別的同學(xué)已經(jīng)開始做解答題時(shí),慌了,結(jié)

果考得一塌糊涂。

復(fù)習(xí)中,學(xué)生要提煉高考熱點(diǎn),查漏補(bǔ)缺,針對(duì)易錯(cuò)的地方加強(qiáng)練習(xí),熟練掌握解決中低檔題目的方法

。在此,提醒考生,千萬別排斥高頻率的模擬測試,它能幫助學(xué)生掌握答題的節(jié)奏、技巧,穩(wěn)定心理狀態(tài),提

高動(dòng)手能力。

針對(duì)這些問題,特別提醒考生,考試中一定要規(guī)范答題,遇到不會(huì)做的題目時(shí)先放一放,此外就是一定要

南昌市高中新課程訓(xùn)練題(不等式2)

一、選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

1.若,則下列不等式成立的是( c )

a.? b. c. d.

2.集合、,若是的充分條件,則b的取值范圍可以是 ( )

a. b. c. d.

3.不等式( )

a.(0,2) b.(2,+∞) c. d.

4.設(shè),函數(shù)則使的_的取值范圍是( )

a. b. c. d.

5.若2-m與|m|-3異號(hào),則m的取值范圍是 ( )

a. m>3 b.-3<3 高中化學(xué) c.2<3 d.-3<2 m=''>3

6.設(shè)是函數(shù)的反函數(shù),則使成立的_的取值范圍為( )

a. b. c. d.

7.不等式的解集不是空集,則實(shí)數(shù)a的取值范圍是( )

a. b. c. d.

8.設(shè)f(_)= 則不等式f(_)>2的解集為 ( )

a.(1,2)(3,+∞) b.(,+∞)

c.(1,2) ( ,+∞) d.(1,2)

9.a(chǎn),b,u都是正實(shí)數(shù),且a,b滿足,則使得a+b≥u恒成立的u的取值范圍是( )

a.(0,16) b.(0,12) c.(0,10) d.(0,8)

10.設(shè)表示不大于_的最大整數(shù),如:[]=3,[—1.2]=-2,[0.5]=0,則使( )

a. b. c. d.

11.關(guān)于_的不等式_|_-a|≥2a2(a( )

a. b. c. d.r

12.在r上定義運(yùn)算,若不等式成立,則( )

a. b. c. d.

二、填空題:本大題共4小題,每小題4分,共16分。請(qǐng)把答案填在答題卡上。

13.某公司一年購買某種貨物400噸,每次都購買噸,運(yùn)費(fèi)為4萬元/次,一年的總存儲(chǔ)費(fèi)用為萬元,要使一年的總運(yùn)費(fèi)與總存儲(chǔ)費(fèi)用之和最小,則 _________噸.

14.若不等式 的解集為,則a+b= 。

15.對(duì)a,br,記ma_|a,b|=函數(shù)f(_)=ma_||_+1|,|_-2||(_r)的最小值是 .

16.關(guān)于,則實(shí)數(shù)k的值等于 。

三、解答題:本大題共6小題,共74分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.已知條件p:|5_-1|>a和條件,請(qǐng)選取適當(dāng)?shù)膶?shí)數(shù)a的值,分別利用所給的兩個(gè)條件作為a、b構(gòu)造命題:“若a則b”,并使得構(gòu)造的原命題為真命題,而其逆命題為假命題.則這樣的一個(gè)原命題可以是什么?并說明為什么這一命題是符合要求的命題.

18.解關(guān)于的不等式

19.已知函數(shù)有兩個(gè)實(shí)根為

(1)求函數(shù);

(2)設(shè)

20.已知函數(shù)的圖象與_、y軸分別相交于點(diǎn)a、b、(1)求;

(2)當(dāng)

21.已知:在上是減函數(shù),解關(guān)于的不等式:

22.已知函數(shù)為奇函數(shù),,且不等式的解集是。

(1)求的值;

(2)是否存在實(shí)數(shù)使不等式對(duì)一切成立?若存在,求出的取值范圍;若不存在,請(qǐng)說明理由。

參考答案

一、選擇題

c d c ad,a c c a c ,b c

二、填空題

13.20 14.-2

15. 16.

三、解答題

17.解:已知條件即,或,∴,或,

已知條件即,∴,或;

令,則即,或,此時(shí)必有成立,反之不然.

故可以選取的一個(gè)實(shí)數(shù)是,a為,b為,對(duì)應(yīng)的命題是若則,

由以上過程可知這一命題的原命題為真命題,但它的逆命題為假命題.

18.解:原不等式可化為:

①當(dāng)時(shí),原不等式的解集為

②當(dāng)時(shí),原不等式的解集為

③當(dāng)時(shí),原不等式的解集為

④當(dāng)時(shí),原不等式的解集為

⑤當(dāng)時(shí),原不等式的解集為

⑥當(dāng)時(shí),原不等式的解集為

19.解:(1)

1

2

3

20.

21. 解:由得

不等式的解集為

22.解:(1)是奇函數(shù)對(duì)定義域內(nèi)一切都成立b=0,從而。又,再由,得或,所以。

此時(shí),在上是增函數(shù),注意到,則必有,即,所以,綜上:;

(2)由(1),,它在上均為增函數(shù),而所以的值域?yàn)?,符合題設(shè)的實(shí)數(shù)應(yīng)滿足,即,故符合題設(shè)的實(shí)數(shù)不存在。

【第12篇 高一數(shù)學(xué)必修一公式總結(jié)

三角函數(shù)公式

兩角和公式 sin(a+b)=sinacosb+cosasinb sin(a-b)=sinacosb-sinbcosa

cos(a+b)=cosacosb-sinasinb cos(a-b)=cosacosb+sinasinb

tan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga) ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)

倍角公式 tan2a=2tana/(1-tan2a) ctg2a=(ctg2a-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式 sin(a/2)=√((1-cosa)/2) sin(a/2)=-√((1-cosa)/2) cos(a/2)=√((1+cosa)/2) cos(a/2)=-√((1+cosa)/2) tan(a/2)=√((1-cosa)/((1+cosa)) tan(a/2)=-√((1-cosa)/((1+cosa)) ctg(a/2)=√((1+cosa)/((1-cosa)) ctg(a/2)=-√((1+cosa)/((1-cosa))

積化和差 2sinacosb=sin(a+b)+sin(a-b)

2cosasinb=sin(a+b)-sin(a-b)

2cosacosb=cos(a+b)-sin(a-b)

-2sinasinb=cos(a+b)-cos(a-b)

和差化積 sina+sinb=2sin((a+b)/2)cos((a-b)/2

cosa+cosb=2cos((a+b)/2)sin((a-b)/2)

tana+tanb=sin(a+b)/cosacosb

tana-tanb=sin(a-b)/cosacosb

ctga+ctgb=sin(a+b)/sinasinb

-ctga+ctgb=sin(a+b)/sinasin

集合與函數(shù)概念

一,集合有關(guān)概念

1,集合的含義:某些指定的對(duì)象集在一起就成為一個(gè)集合,其中每一個(gè)對(duì)象叫元素.

2,集合的中元素的三個(gè)特性:

1.元素的確定性; 2.元素的互異性; 3.元素的無序性

說明:(1)對(duì)于一個(gè)給定的集合,集合中的元素是確定的,任何一個(gè)對(duì)象或者是或者不是這個(gè)給定的集合的元素.

(2)任何一個(gè)給定的集合中,任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入一個(gè)集合時(shí),僅算一個(gè)元素.

(3)集合中的元素是平等的,沒有先后順序,因此判定兩個(gè)集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣.

(4)集合元素的三個(gè)特性使集合本身具有了確定性和整體性.3,集合的表示:{ … } 如{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

1. 用拉丁字母表示集合:a={我校的籃球隊(duì)員},b={1,2,3,4,5}

2.集合的表示方法:列舉法與描述法.

注意啊:常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集) 記作:n

正整數(shù)集 n_或 n+ 整數(shù)集z 有理數(shù)集q 實(shí)數(shù)集r

關(guān)于'屬于'的概念

集合的元素通常用小寫的拉丁字母表示,如:a是集合a的元素,就說a屬于集合a 記作 a∈a ,相反,a不屬于集合a 記作 a(a

列舉法:把集合中的元素一一列舉出來,然后用一個(gè)大括號(hào)括上.

描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法.用確定的條件表示某些對(duì)象是否屬于這個(gè)集合的方法.

①語言描述法:例:{不是直角三角形的三角形}

②數(shù)學(xué)式子描述法:例:不等式_-3]2的解集是{_(r| _-3]2}或{_| _-3]2}

4,集合的分類:

1.有限集 含有有限個(gè)元素的集合

2.無限集 含有無限個(gè)元素的集合

3.空集 不含任何元素的集合 例:{_|_2=-5}

二,集合間的基本關(guān)系

1.'包含'關(guān)系—子集

注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合.

反之: 集合a不包含于集合b,或集合b不包含集合a,記作ab或ba

2.'相等'關(guān)系(5≥5,且5≤5,則5=5)

實(shí)例:設(shè) a={_|_2-1=0} b={-1,1} '元素相同'

結(jié)論:對(duì)于兩個(gè)集合a與b,如果集合a的任何一個(gè)元素都是集合b的元素,同時(shí),集合b的任何一個(gè)元素都是集合a的元素,我們就說集合a等于集合b,即:a=b

① 任何一個(gè)集合是它本身的子集.a(a

②真子集:如果a(b,且a( b那就說集合a是集合b的真子集,記作ab(或ba)

③如果 a(b, b(c ,那么 a(c

④ 如果a(b 同時(shí) b(a 那么a=b

3. 不含任何元素的集合叫做空集,記為φ

規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集.

三,集合的運(yùn)算

1.交集的定義:一般地,由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集.

記作a∩b(讀作'a交b'),即a∩b={_|_∈a,且_∈b}.

2,并集的定義:一般地,由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集.記作:a∪b(讀作'a并b'),即a∪b={_|_∈a,或_∈b}.

3,交集與并集的性質(zhì):a∩a = a, a∩φ= φ, a∩b = b∩a,a∪a = a,a∪φ= a ,a∪b = b∪a.

4,全集與補(bǔ)集

(1)補(bǔ)集:設(shè)s是一個(gè)集合,a是s的一個(gè)子集(即),由s中所有不屬于a的元素組成的集合,叫做s中子集a的補(bǔ)集(或余集)

記作: csa 即 csa ={_ ( _(s且 _(a}

(2)全集:如果集合s含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用u來表示.

(3)性質(zhì):⑴cu(c ua)=a ⑵(c ua)∩a=φ ⑶(cua)∪a=u

【第13篇 高一數(shù)學(xué)必修一重點(diǎn)知識(shí)點(diǎn)總結(jié)

一、集合

一、集合有關(guān)概念

1.集合的含義

2.集合的中元素的三個(gè)特性:

(1)元素的確定性如:世界上的山

(2)元素的互異性如:由happy的字母組成的集合{h,a,p,y}

(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個(gè)集合

3.集合的表示:{…}如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:a={我校的籃球隊(duì)員},b={1,2,3,4,5}

(2)集合的表示方法:列舉法與描述法。

?注意:常用數(shù)集及其記法:

非負(fù)整數(shù)集(即自然數(shù)集)記作:n

正整數(shù)集n_或n+整數(shù)集z有理數(shù)集q實(shí)數(shù)集r

1)列舉法:{a,b,c……}

2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號(hào)內(nèi)表示集合的方法。{_?r|_-3>2},{_|_-3>2}

3)語言描述法:例:{不是直角三角形的三角形}

4)venn圖:

4、集合的分類:

(1)有限集含有有限個(gè)元素的集合

(2)無限集含有無限個(gè)元素的集合

(3)空集不含任何元素的集合例:{_|_2=-5}

二、集合間的基本關(guān)系

1.“包含”關(guān)系—子集

注意:有兩種可能(1)a是b的一部分,;(2)a與b是同一集合。

反之:集合a不包含于集合b,或集合b不包含集合a,記作ab或ba

2.“相等”關(guān)系:a=b(5≥5,且5≤5,則5=5)

實(shí)例:設(shè)a={_|_2-1=0}b={-1,1}“元素相同則兩集合相等”

即:①任何一個(gè)集合是它本身的子集。a?a

②真子集:如果a?b,且a?b那就說集合a是集合b的真子集,記作ab(或ba)

③如果a?b,b?c,那么a?c

④如果a?b同時(shí)b?a那么a=b

3.不含任何元素的集合叫做空集,記為φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

?有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

二、函數(shù)

1、函數(shù)定義域、值域求法綜合

2.、函數(shù)奇偶性與單調(diào)性問題的解題策略

3、恒成立問題的求解策略

4、反函數(shù)的幾種題型及方法

5、二次函數(shù)根的問題——一題多解

&指數(shù)函數(shù)y=a^_

a^a_a^b=a^a+b(a>0,a、b屬于q)

(a^a)^b=a^ab(a>0,a、b屬于q)

(ab)^a=a^a_b^a(a>0,a、b屬于q)

指數(shù)函數(shù)對(duì)稱規(guī)律:

1、函數(shù)y=a^_與y=a^-_關(guān)于y軸對(duì)稱

2、函數(shù)y=a^_與y=-a^_關(guān)于_軸對(duì)稱

3、函數(shù)y=a^_與y=-a^-_關(guān)于坐標(biāo)原點(diǎn)對(duì)稱

&對(duì)數(shù)函數(shù)y=loga^_

如果,且,,,那么:

○1·+;

○2-;

○3.

注意:換底公式

(,且;,且;).

冪函數(shù)y=_^a(a屬于r)

1、冪函數(shù)定義:一般地,形如的函數(shù)稱為冪函數(shù),其中為常數(shù).

2、冪函數(shù)性質(zhì)歸納.

(1)所有的冪函數(shù)在(0,+∞)都有定義并且圖象都過點(diǎn)(1,1);

(2)時(shí),冪函數(shù)的圖象通過原點(diǎn),并且在區(qū)間上是增函數(shù).特別地,當(dāng)時(shí),冪函數(shù)的圖象下凸;當(dāng)時(shí),冪函數(shù)的圖象上凸;

(3)時(shí),冪函數(shù)的圖象在區(qū)間上是減函數(shù).在第一象限內(nèi),當(dāng)從右邊趨向原點(diǎn)時(shí),圖象在軸右方無限地逼近軸正半軸,當(dāng)趨于時(shí),圖象在軸上方無限地逼近軸正半軸.

方程的根與函數(shù)的零點(diǎn)

1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。

2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。

即:方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).

3、函數(shù)零點(diǎn)的求法:

○1(代數(shù)法)求方程的實(shí)數(shù)根;

○2(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點(diǎn).

4、二次函數(shù)的零點(diǎn):

二次函數(shù).

(1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn).

(2)△=0,方程有兩相等實(shí)根,二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn).

(3)△<0,方程無實(shí)根,二次函數(shù)的圖象與軸無交點(diǎn),二次函數(shù)無零點(diǎn).

三、平面向量

向量:既有大小,又有方向的量.

數(shù)量:只有大小,沒有方向的量.

有向線段的三要素:起點(diǎn)、方向、長度.

零向量:長度為的向量.

單位向量:長度等于個(gè)單位的向量.

相等向量:長度相等且方向相同的向量

&向量的運(yùn)算

加法運(yùn)算

ab+bc=ac,這種計(jì)算法則叫做向量加法的三角形法則。

已知兩個(gè)從同一點(diǎn)o出發(fā)的兩個(gè)向量oa、ob,以oa、ob為鄰邊作平行四邊形oacb,則以o為起點(diǎn)的對(duì)角線oc就是向量oa、ob的和,這種計(jì)算法則叫做向量加法的平行四邊形法則。

對(duì)于零向量和任意向量a,有:0+a=a+0=a。

|a+b|≤|a|+|b|。

向量的加法滿足所有的加法運(yùn)算定律。

減法運(yùn)算

與a長度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

數(shù)乘運(yùn)算

實(shí)數(shù)λ與向量a的積是一個(gè)向量,這種運(yùn)算叫做向量的數(shù)乘,記作λa,|λa|=|λ||a|,當(dāng)λ>0時(shí),λa的方向和a的方向相同,當(dāng)λ<0時(shí),λa的方向和a的方向相反,當(dāng)λ=0時(shí),λa=0。

設(shè)λ、μ是實(shí)數(shù),那么:(1)(λμ)a=λ(μa)(2)(λμ)a=λaμa(3)λ(a±b)=λa±λb(4)(-λ)a=-(λa)=λ(-a)。

向量的加法運(yùn)算、減法運(yùn)算、數(shù)乘運(yùn)算統(tǒng)稱線性運(yùn)算。

向量的數(shù)量積

已知兩個(gè)非零向量a、b,那么|a||b|cosθ叫做a與b的數(shù)量積或內(nèi)積,記作a?b,θ是a與b的夾角,|a|cosθ(|b|cosθ)叫做向量a在b方向上(b在a方向上)的投影。零向量與任意向量的數(shù)量積為0。

a?b的幾何意義:數(shù)量積a?b等于a的長度|a|與b在a的方向上的投影|b|cosθ的乘積。

兩個(gè)向量的數(shù)量積等于它們對(duì)應(yīng)坐標(biāo)的乘積的和。

四、三角函數(shù)

1、善于用“1“巧解題

2、三角問題的非三角化解題策略

3、三角函數(shù)有界性求最值解題方法

4、三角函數(shù)向量綜合題例析

5、三角函數(shù)中的數(shù)學(xué)思想方法

【第14篇 高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

導(dǎo)語高一新生要根據(jù)自己的條件,以及高中階段學(xué)科知識(shí)交叉多、綜合性強(qiáng),以及考查的知識(shí)和思維觸點(diǎn)廣的特點(diǎn),找尋一套行之有效的學(xué)習(xí)方法。今天為各位同學(xué)整理了《高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)》,希望對(duì)您的學(xué)習(xí)有所幫助!

1.高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

定義:

形如y=_^a(a為常數(shù))的函數(shù),即以底數(shù)為自變量冪為因變量,指數(shù)為常量的函數(shù)稱為冪函數(shù)。

定義域和值域:

當(dāng)a為不同的數(shù)值時(shí),冪函數(shù)的定義域的不同情況如下:如果a為任意實(shí)數(shù),則函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果a為負(fù)數(shù),則_肯定不能為0,不過這時(shí)函數(shù)的定義域還必須根[據(jù)q的奇偶性來確定,即如果同時(shí)q為偶數(shù),則_不能小于0,這時(shí)函數(shù)的定義域?yàn)榇笥?的所有實(shí)數(shù);如果同時(shí)q為奇數(shù),則函數(shù)的定義域?yàn)椴坏扔?的所有實(shí)數(shù)。當(dāng)_為不同的數(shù)值時(shí),冪函數(shù)的值域的不同情況如下:在_大于0時(shí),函數(shù)的值域總是大于0的實(shí)數(shù)。在_小于0時(shí),則只有同時(shí)q為奇數(shù),函數(shù)的值域?yàn)榉橇愕膶?shí)數(shù)。而只有a為正數(shù),0才進(jìn)入函數(shù)的值域

性質(zhì):

對(duì)于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

首先我們知道如果a=p/q,q和p都是整數(shù),則_^(p/q)=q次根號(hào)(_的p次方),如果q是奇數(shù),函數(shù)的定義域是r,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時(shí),設(shè)a=-k,則_=1/(_^k),顯然_≠0,函數(shù)的定義域是(-∞,0)∪(0,+∞).因此可以看到_所受到的限制來源于兩點(diǎn),一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號(hào)下而不能為負(fù)數(shù),那么我們就可以知道:

排除了為0與負(fù)數(shù)兩種可能,即對(duì)于_>0,則a可以是任意實(shí)數(shù);

排除了為0這種可能,即對(duì)于_<0和_>0的所有實(shí)數(shù),q不能是偶數(shù);

排除了為負(fù)數(shù)這種可能,即對(duì)于_為大于且等于0的所有實(shí)數(shù),a就不能是負(fù)數(shù)。

2.高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

棱錐

棱錐的定義:有一個(gè)面是多邊形,其余各面都是有一個(gè)公共頂點(diǎn)的三角形,這些面圍成的幾何體叫做棱錐。

棱錐的性質(zhì):

(1)側(cè)棱交于一點(diǎn)。側(cè)面都是三角形

(2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

正棱錐

正棱錐的定義:如果一個(gè)棱錐底面是正多邊形,并且頂點(diǎn)在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

正棱錐的性質(zhì):

(1)各側(cè)棱交于一點(diǎn)且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

(3)多個(gè)特殊的直角三角形

a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點(diǎn)在底面的射影為底面三角形的垂心。

b、四面體中有三對(duì)異面直線,若有兩對(duì)互相垂直,則可得第三對(duì)也互相垂直。且頂點(diǎn)在底面的射影為底面三角形的垂心。

3.高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

兩個(gè)平面的位置關(guān)系:

(1)兩個(gè)平面互相平行的定義:空間兩平面沒有公共點(diǎn)

(2)兩個(gè)平面的位置關(guān)系:

兩個(gè)平面平行——沒有公共點(diǎn);兩個(gè)平面相交——有一條公共直線。

a、平行

兩個(gè)平面平行的判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。

兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么交線平行。

b、相交

二面角

(1)半平面:平面內(nèi)的一條直線把這個(gè)平面分成兩個(gè)部分,其中每一個(gè)部分叫做半平面。

(2)二面角:從一條直線出發(fā)的兩個(gè)半平面所組成的圖形叫做二面角。二面角的取值范圍為[0°,180°]

(3)二面角的棱:這一條直線叫做二面角的棱。

(4)二面角的面:這兩個(gè)半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一點(diǎn)為端點(diǎn),在兩個(gè)面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

兩平面垂直

兩平面垂直的定義:兩平面相交,如果所成的角是直二面角,就說這兩個(gè)平面互相垂直。記為⊥

兩平面垂直的判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直

兩個(gè)平面垂直的性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于交線的直線垂直于另一個(gè)平面。

二面角求法:直接法(作出平面角)、三垂線定理及逆定理、面積射影定理、空間向量之法向量法(注意求出的角與所需要求的角之間的等補(bǔ)關(guān)系)

4.高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

1.“包含”關(guān)系—子集

注意:有兩種可能

(1)a是b的一部分;

(2)a與b是同一集合。

反之:集合a不包含于集合b,或集合b不包含集合a,記作ab或ba

2.“相等”關(guān)系:a=b(5≥5,且5≤5,則5=5)

實(shí)例:設(shè)a={_|_2-1=0}b={-1,1}“元素相同則兩集合相等”

即:

①任何一個(gè)集合是它本身的子集。a(a

②真子集:如果a(b,且a(b那就說集合a是集合b的真子集,記作ab(或ba)

③如果a(b,b(c,那么a(c

④如果a(b同時(shí)b(a那么a=b

3.不含任何元素的集合叫做空集,記為φ

規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

有n個(gè)元素的集合,含有2n個(gè)子集,2n-1個(gè)真子集

5.高一年級(jí)數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

集合的運(yùn)算

1.交集的定義:一般地,由所有屬于a且屬于b的元素所組成的集合,叫做a,b的交集.

記作ab(讀作a交b),即ab={_|_a,且_b}.

2、并集的定義:一般地,由所有屬于集合a或?qū)儆诩蟗的元素所組成的集合,叫做a,b的并集.記作:ab(讀作a并b),即ab={_|_a,或_b}.

3、交集與并集的性質(zhì):aa=a,a=,ab=ba,aa=a,

a=a,ab=ba.

4、全集與補(bǔ)集

(1)補(bǔ)集:設(shè)s是一個(gè)集合,a是s的一個(gè)子集(即),由s中所有不屬于a的元素組成的集合,叫做s中子集a的補(bǔ)集(或余集)

(2)全集:如果集合s含有我們所要研究的各個(gè)集合的全部元素,這個(gè)集合就可以看作一個(gè)全集.通常用u來表示.

(3)性質(zhì):

⑴cu(cua)=a

⑵(cua)

⑶(cua)a=u

【第15篇 高中一年級(jí)數(shù)學(xué)必修一函數(shù)概念知識(shí)總結(jié)

1、指數(shù)函數(shù) ( 且 ),其中 是自變量, 叫做底數(shù),定義域是r

2、若 ,則 叫做以 為底 的對(duì)數(shù)。記作: ( , )

其中, 叫做對(duì)數(shù)的底數(shù), 叫做對(duì)數(shù)的真數(shù)。

注:指數(shù)式與對(duì)數(shù)式的互化公式:

3、對(duì)數(shù)的性質(zhì)

(1)零和負(fù)數(shù)沒有對(duì)數(shù),即 中 ;

(2)1的對(duì)數(shù)等于0,即 ;底數(shù)的對(duì)數(shù)等于1,即

4、常用對(duì)數(shù) :以10為底的對(duì)數(shù)叫做常用對(duì)數(shù),記為:

自然對(duì)數(shù) :以e(e=2.71828…)為底的對(duì)數(shù)叫做自然對(duì)數(shù),記為:

5、對(duì)數(shù)恒等式:

6、對(duì)數(shù)的運(yùn)算性質(zhì)(a>0,a≠1,m>0,n>0)

(1) ; (2) ;

(3) (注意公式的逆用)

7、對(duì)數(shù)的換底公式 ( ,且 , ,且 , ).

推論① 或 ; ② .

8、對(duì)數(shù)函數(shù) ( ,且 ):其中, 是自變量, 叫做底數(shù),定義域是

圖像

性質(zhì)定義域:(0, ∞)

值域:r

過定點(diǎn)(1,0)

增函數(shù)減函數(shù)

取值范圍0<1時(shí),y<0

_>1時(shí),y>00<1時(shí),y>0

_>1時(shí),y<0

9、指數(shù)函數(shù) 與對(duì)數(shù)函數(shù) 互為反函數(shù);它們圖象關(guān)于直線 對(duì)稱.

10、冪函數(shù) ( ),其中 是自變量。要求掌握 這五種情況(如下圖)

11、冪函數(shù) 的性質(zhì)及圖象變化規(guī)律:

(?。┧袃绾瘮?shù)在(0,+∞)都有定義,并且圖象都過點(diǎn)(1,1);

(ⅱ)當(dāng) 時(shí),冪函數(shù)的圖象都通過原點(diǎn),并且在區(qū)間 上是增函數(shù).

(ⅲ)當(dāng) 時(shí),冪函數(shù)的圖象在區(qū)間 上是減函數(shù).

【第16篇 高三數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

高三數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)

1. 對(duì)于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無序性”。

中元素各表示什么?

注重借助于數(shù)軸和文氏圖解集合問題。

空集是一切集合的子集,是一切非空集合的真子集。

3. 注意下列性質(zhì):

(3)德摩根定律:

4. 你會(huì)用補(bǔ)集思想解決問題嗎?(排除法、間接法)

的取值范圍。

6. 命題的四種形式及其相互關(guān)系是什么?

(互為逆否關(guān)系的命題是等價(jià)命題。)

原命題與逆否命題同真、同假;逆命題與否命題同真同假。

7. 對(duì)映射的概念了解嗎?映射f:a→b,是否注意到a中元素的任意性和b中與之對(duì)應(yīng)元素的性,哪幾種對(duì)應(yīng)能構(gòu)成映射?

(一對(duì)一,多對(duì)一,允許b中有元素?zé)o原象。)

8. 函數(shù)的三要素是什么?如何比較兩個(gè)函數(shù)是否相同?

(定義域、對(duì)應(yīng)法則、值域)

9. 求函數(shù)的定義域有哪些常見類型?

10. 如何求復(fù)合函數(shù)的定義域?

義域是_____________。

11. 求一個(gè)函數(shù)的解析式或一個(gè)函數(shù)的反函數(shù)時(shí),注明函數(shù)的定義域了嗎?

12. 反函數(shù)存在的條件是什么?

(一一對(duì)應(yīng)函數(shù))

求反函數(shù)的步驟掌握了嗎?

(①反解_;②互換_、y;③注明定義域)

13. 反函數(shù)的性質(zhì)有哪些?

①互為反函數(shù)的圖象關(guān)于直線y=_對(duì)稱;

②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;

14. 如何用定義證明函數(shù)的單調(diào)性?

(取值、作差、判正負(fù))

如何判斷復(fù)合函數(shù)的單調(diào)性?

∴……)

15. 如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性?

值是( )

a. 0b. 1c. 2d. 3

∴a的值為3)

16. 函數(shù)f(_)具有奇偶性的必要(非充分)條件是什么?

(f(_)定義域關(guān)于原點(diǎn)對(duì)稱)

注意如下結(jié)論:

(1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。

17. 你熟悉周期函數(shù)的定義嗎?

函數(shù),t是一個(gè)周期。)

數(shù)學(xué)必修一總結(jié)(十六篇)

1、指數(shù)函數(shù)(且),其中是自變量,叫做底數(shù),定義域是r2、若,則叫做以為底的對(duì)數(shù)。記作:(,)其中,叫做對(duì)數(shù)的底數(shù),叫做對(duì)數(shù)的真數(shù)。注:指數(shù)式與對(duì)數(shù)式的互化公式:3、對(duì)數(shù)的性質(zhì)…
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

相關(guān)數(shù)學(xué)必修一信息

  • 數(shù)學(xué)必修一總結(jié)(十六篇)
  • 數(shù)學(xué)必修一總結(jié)(十六篇)81人關(guān)注

    1、指數(shù)函數(shù)(且),其中是自變量,叫做底數(shù),定義域是r2、若,則叫做以為底的對(duì)數(shù)。記作:(,)其中,叫做對(duì)數(shù)的底數(shù),叫做對(duì)數(shù)的真數(shù)。注:指數(shù)式與對(duì)數(shù)式的互化公式:3、對(duì)數(shù)的性質(zhì)… ...[更多]

  • 高一數(shù)學(xué)必修一總結(jié)(八篇)
  • 高一數(shù)學(xué)必修一總結(jié)(八篇)32人關(guān)注

    第一章集合與函數(shù)概念一、集合有關(guān)概念1.集合的含義2.集合的中元素的三個(gè)特性:(1)元素的確定性如:世界上的山(2)元素的互異性如:由hay的字母組成的集合{h,a,,y}(3)元素的無序 ...[更多]

  • 數(shù)學(xué)必修一知識(shí)總結(jié)(十篇)
  • 數(shù)學(xué)必修一知識(shí)總結(jié)(十篇)12人關(guān)注

    高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)高中數(shù)學(xué)必修一知識(shí)點(diǎn)總結(jié)一、直線與方程(1)直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平 ...[更多]

總結(jié)范文熱門信息